Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of the cyclic structure content on aliphatic polycarbonate-based polyurethane

Abstract

Aliphatic polycarbonate-based polyurethanes were successfully synthesized using two aliphatic polycarbonate polyols and hexamethylene diisocyanate (HDI) with 1,4-butanediol (1,4-BD) as the chain extender. One of the aliphatic polycarbonate polyols, named PBC-diol, was prepared from dimethyl carbonate (DMC) and 1,4-BD, while the other, named PCHC-diol, was derived by reacting DMC with 1,4-cyclohexanedimethanol (CHDM). The results of the thermogravimetric analysis (TGA) indicated that the cyclic structure improved the thermal stability of the polyurethanes. In addition, the differential scanning calorimetry (DSC) curves showed that the cyclic structure increased the glass transition temperature (Tg) of the polyurethanes but slowed their crystallization. Furthermore, the mechanical properties of the polyurethanes with different cyclic structure contents were analyzed using Instron. Although the elongation at break decreased, the tensile strength increased from 32.6 to 844.0 MPa when the PBC-diol was replaced with PCHC-diol in the polyurethanes. Finally, Fourier transform infrared (FTIR) analysis was conducted to investigate the formation of hydrogen bonds. The relationship between the hydrogen bonds and cyclic structure content was also shown in this study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ugarte L, Calvo-Correas T, Gonzalez-Gurrutxaga I, Peña-Rodriguez C, Etxeberria O, Corcuera MA, et al. Towards Circular Economy: different Strategies for Polyurethane Waste Recycling and the Obtaining of New Products. Proc. 2018;2:1490.

    Article  Google Scholar 

  2. Choi J, Moon DS, Jang JU, Yin WB, Lee B, Lee KJ. Synthesis of highly functionalized thermoplastic polyurethanes and their potential applications. Polymer. 2017;116:287–94.

    Article  CAS  Google Scholar 

  3. Solanki A, Das M, Thakore S. A review on carbohydrate embedded polyurethanes: an emerging area in the scope of biomedical applications. Carbohydr Polym. 2018;181:1003–16.

    Article  CAS  Google Scholar 

  4. Bahrami S, Solouk A, Mirzadeh H, Seifalian AM. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos B Eng. 2019;168:421–31.

    Article  CAS  Google Scholar 

  5. Fortman DJ, Sheppard DT, Dichtel WR. Reprocessing Cross-Linked Polyurethanes by Catalyzing Carbamate Exchange. Macromolecules. 2019;52:6330–5.

    Article  CAS  Google Scholar 

  6. Gunatillake PA, Dandeniyage LS, Adhikari R, Bown M, Shanks R, Adhikari B. Advancements in the Development of Biostable Polyurethanes. Polym Rev. 2018;59:391–417.

    Article  Google Scholar 

  7. Joseph J, Patel RM, Wenham A, Smith JR. Biomedical applications of polyurethane materials and coatings. Trans Imf. 2018;96:121–9.

    Article  CAS  Google Scholar 

  8. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR. Polyurethane types, synthesis and applications – a review. RSC Adv. 2016;6:114453–82.

    Article  CAS  Google Scholar 

  9. Kausar A. Polyurethane Composite Foams in High-Performance Applications: a Review. Polym Plast Technol Eng. 2017;57:346–69.

    Article  Google Scholar 

  10. Cakić SM, Špírková M, Ristić IS, B-Simendić JK, M-Cincović M, Poręba R. The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content. Mater Chem Phys. 2013;138:277–85.

    Article  Google Scholar 

  11. Špírková M, Poręba R, Pavličević J, Kobera L, Baldrian J, Pekárek M. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites I The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. J Appl Polym Sci. 2012;126:1016–30.

    Article  Google Scholar 

  12. Dongdong P, Hengshui T. Polycarbonate polyurethane elastomers synthesized via a solvent-free and nonisocyanate melt transesterification process. J Appl Polym Sci. 2015;132:41377. https://doi.org/10.1002/app.41377.

    Article  CAS  Google Scholar 

  13. Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polym Eng Sci. 2008;48:297–306.

    Article  CAS  Google Scholar 

  14. Sobczak M, Dębek C, Olędzka E, Nałęcz-Jawecki G, Kołodziejski WL, Rajkiewicz M. Segmented polyurethane elastomers derived from aliphatic polycarbonate and poly(ester-carbonate) soft segments for biomedical applications.J Polym Sci Part A: Polym Chem. 2012;50:3904–13.

    Article  CAS  Google Scholar 

  15. Rosu D, Rosu L, Cascaval CN. IR-change and yellowing of polyurethane as a result of UV irradiation. Polym Degrad Stab. 2009;94:591–6.

    Article  CAS  Google Scholar 

  16. Singh R, Tomer NS, Bhadraiah SV. Photo-oxidation studies on polyurethane coating: effect of additives on yellowing of polyurethane. Polym Degrad Stab. 2001;73:443–6.

    Article  CAS  Google Scholar 

  17. Irusta L, Fernandez-Berridi M. Photooxidative behaviour of segmented aliphatic polyurethanes. Polym Degrad Stab. 1999;63:113–9.

    Article  CAS  Google Scholar 

  18. Zhang J, Tu W, Dai Z. Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers. Prog Org Coat. 2012;75:579–83.

    Article  CAS  Google Scholar 

  19. Kim YD, Kim SC. Effect of chemical structure on the biodegradation of polyurethanes under composting conditions. Polym Degrad Stab. 1998;62:343–52.

    Article  CAS  Google Scholar 

  20. Zheng Y, Yanful EK, Bassi AS. A review of plastic waste biodegradation. Crit Rev Biotechnol. 2005;25:243–50.

    Article  CAS  Google Scholar 

  21. Xu W, Zhou L, Sun W, Zhang J, Tu W. Effect of difunctional acids on the physicochemical, thermal, and mechanical properties of polyester polyol-based polyurethane coatings. J Appl Polym Sci. 2015;132:41246. https://doi.org/10.1002/app.41246.

    Article  CAS  Google Scholar 

  22. Zhang J, Tu W, Dai Z. Transparent polyester polyol-based polyurethane coatings: the effect of alcohols. J Coat Technol Res. 2013;10:887–95.

    Article  Google Scholar 

  23. Kucinska-Lipka J, Gubanska I, Strankowski M, Cieslinski H, Filipowicz N, Janik H. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration. Mater Sci Eng C. 2017;75:671–81.

    Article  CAS  Google Scholar 

  24. Javni I, Hong DP, Petrović ZS. Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. J Appl Polym Sci. 2013;128:566–71.

    Article  CAS  Google Scholar 

  25. Awasthi S, Agarwal D. Influence of cycloaliphatic compounds on the properties of polyurethane coatings. J Coat Technol Res. 2007;4:67–73.

    Article  CAS  Google Scholar 

  26. Ni H, Daum JL, Thiltgen PR, Soucek MD, Simonsick WJ Jr, Zhong W, et al. Cycloaliphatic polyester-based high-solids polyurethane coatings: II The effect of difunctional acid. Prog Org Coat. 2002;45:49–58.

    Article  CAS  Google Scholar 

  27. Ni H, Daum JL, Soucek MD, Simonsick WJ. Cycloaliphatic polyester based high solids polyurethane coatings: I The effect of difunctional alcohols. J Coat Technol. 2002;74:49–56.

    Article  CAS  Google Scholar 

  28. Javni I, Zhang W, Petrović ZS. Effect of different isocyanates on the properties of soy‐based polyurethanes. J Appl Polym Sci. 2003;88:2912–6.

    Article  CAS  Google Scholar 

  29. Gu L, Cui B, Wu Q-Y, Yu H. Bio-based polyurethanes with shape memory behavior at body temperature: effect of different chain extenders. RSC Adv. 2016;6:17888–95.

    Article  CAS  Google Scholar 

  30. Lee DK, Tsai HB. Properties of segmented polyurethanes derived from different diisocyanates. J Appl Polym Sci. 2000;75:167–74.

    Article  CAS  Google Scholar 

  31. Ping P, Wang W, Chen X, Jing X. The influence of hard segments on two phase structure and shape memory properties of PCL based segmented polyurethanes. J Polym Sci, Part B: Polym Phys. 2007;45:557–70.

    Article  CAS  Google Scholar 

  32. Wang W, Ping P, Chen X, Jing X. Shape memory effect of poly (L-lactide) based polyurethanes with different hard segments. Polym Int. 2007;56:840–6.

    Article  CAS  Google Scholar 

  33. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34:1068–133.

    Article  CAS  Google Scholar 

  34. Ferguson J, Petrovic Z. Thermal stability of segmented polyurethanes. Eur Polym J. 1976;12:177–81.

    Article  CAS  Google Scholar 

  35. Madhavan K, Reddy B. Synthesis and characterization of poly (dimethylsiloxane urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. J Polym Sci Part A: Polym Chem. 2006;44:2980–9.

    Article  CAS  Google Scholar 

  36. Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ. Thermal degradation of segmented polyurethanes. J Appl Polym Sci. 1994;51:1087–95.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Ministry of Science and Technology of the Republic of China (MOST 108-2221-E-006-001) is gratefully acknowledged. The authors also gratefully acknowledge the Instrument Center of National Cheng Kung University for letting them use the Bruker Avance 600 NMR spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Chien Wang or Chuh-Yung Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YH., Wang, CC. & Chen, CY. Effect of the cyclic structure content on aliphatic polycarbonate-based polyurethane. Polym J 53, 695–702 (2021). https://doi.org/10.1038/s41428-021-00462-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00462-6

This article is cited by

Search

Quick links