Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Construction of nanomaterials based on pH-responsive polymers for effective tumor delivery

Abstract

Polymer-based nanomaterials can deliver antitumor reagents to tumor tissues effectively due to the enhanced permeation and retention (EPR) effect. To further improve the tumor delivery efficacy, a targeting moiety should be installed in the polymer building blocks. In this regard, an acidic pH is one of the characteristics of tumor sites, whereby polymers that respond to acidic conditions would realize the construction of tumor-targeted nanomaterials. In this review, we explain the rationale strategies for the design of functional polymers with responsiveness to a low tumor pH and describe examples of smart nanomaterials designed for selective tumor delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  CAS  PubMed  Google Scholar 

  2. Lächelt U, Wagner E. Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev. 2015;115:11043–78.

    Article  PubMed  Google Scholar 

  3. Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev. 2021;173:306–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–7.

    Article  CAS  PubMed  Google Scholar 

  5. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49:6288–308.

    Article  CAS  Google Scholar 

  6. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92.

    Article  CAS  PubMed  Google Scholar 

  7. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  8. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986;31:288–305.

    Article  CAS  PubMed  Google Scholar 

  9. Maeda H. The 35th anniversary of the discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J Pers Med. 2021;11:229.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yamada N, Honda Y, Takemoto H, Nomoto T, Matsui M, Tomoda K, et al. Engineering tumour cell-binding synthetic polymers with sensing dense transporters associated with aberrant glutamine metabolism. Sci Rep. 2017;7:6077.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10:4557–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woythe L, Tito NB, Albertazzi L. A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev. 2021;169:1–21.

    Article  CAS  PubMed  Google Scholar 

  13. de Valk KS, Deken MM, Handgraaf HJM, Bhairosingh SS, Bijlstra OD, van Esdonk MJ, et al. First-in-human assessment of cRGD-ZW800-1, a Zwitterionic, integrin-targeted, near-infrared fluorescent peptide in colon carcinoma. Clin Cancer Res. 2020;26:3990–8.

    Article  PubMed  Google Scholar 

  14. Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17:e254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet. 2019;394:793–804.

    Article  CAS  PubMed  Google Scholar 

  16. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994;54:4313–20.

    CAS  PubMed  Google Scholar 

  17. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3:177–82.

    Article  CAS  PubMed  Google Scholar 

  18. Huang CH, Takemoto H, Nomoto T, Tomoda K, Matsui M, Nishiyama N. Utility of the 2-nitrobenzenesulfonamide group as a chemical linker for enhanced extracellular stability and cytosolic cleavage in siRNA-conjugated polymer systems. ChemMedChem. 2017;12:19–22.

    Article  PubMed  Google Scholar 

  19. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X, et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater. 2014;13:204–12.

    Article  CAS  PubMed  Google Scholar 

  22. Takemoto H, Nishiyama N. Functional polymer-based siRNA delivery carrier that recognizes site-specific biosignals. J Control Release. 2017;267:90–9.

    Article  CAS  PubMed  Google Scholar 

  23. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.

    Article  CAS  PubMed  Google Scholar 

  24. Duncan R, Ringsdorf H, Satchi-Fainaro R. Polymer therapeutics–polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities. J Drug Taget. 2006;14:337–41.

    Article  CAS  Google Scholar 

  25. Kopeček J. Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev. 2013;65:49–59.

    Article  PubMed  Google Scholar 

  26. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    Article  CAS  PubMed  Google Scholar 

  27. Kinoh H, Quader S, Shibasaki H, Liu X, Maity A, Yamasoba T, et al. Translational nanomedicine boosts anti-PD1 therapy to eradicate orthotopic PTEN-negative glioblastoma. ACS Nano. 2020;14:10127–40.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Ge Q, Ting D, Nguyen D, Shen HR, Chen J, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater. 2004;3:190–6.

    Article  CAS  PubMed  Google Scholar 

  29. Tockary TA, Osada K, Motoda Y, Hiki S, Chen Q, Takeda KM, et al. Rod-to-globule transition of pDNA/PEG-poly(l-Lysine) polyplex micelles induced by a collapsed balance between DNA rigidity and PEG crowdedness. Small 2016;12:1193–200.

    Article  CAS  PubMed  Google Scholar 

  30. Rozema DB, Ekena K, Lewis DL, Loomis AG, Wolff JA. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjugate Chem. 2003;14:51–7.

    Article  CAS  Google Scholar 

  31. Du JZ, Li HJ, Wang J. Tumor-acidity-cleavable maleic acid amide (TACMAA): a powerful tool for designing smart nanoparticles to overcome delivery barriers in cancer nanomedicine. Acc Chem Res. 2018;51:2848–56.

    Article  CAS  PubMed  Google Scholar 

  32. Dixon HB, Perham RN. Reversible blocking of amino groups with citraconic anhydride. Biochem J. 1968;109:312–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maeda Y, Pittella F, Nomoto T, Takemoto H, Nishiyama N, Miyata K, et al. Fine-tuning of charge-conversion polymer structure for efficient endosomal escape of siRNA-loaded calcium phosphate hybrid micelles. Macromol Rapid Commun. 2014;35:1211–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, et al. siRNA-Loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules. 2016;17:246–55.

    Article  CAS  PubMed  Google Scholar 

  35. Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev. 2021;175:113809.

    Article  CAS  PubMed  Google Scholar 

  36. Sato Y, Nakamura T, Yamada Y, Harashima H. The nanomedicine rush: new strategies for unmet medical needs based on innovative nano DDS. J Control Release. 2021;330:305–16.

    Article  CAS  PubMed  Google Scholar 

  37. Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8:622–32.

    Article  CAS  PubMed  Google Scholar 

  38. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.

    Article  CAS  PubMed  Google Scholar 

  39. Xu E, Saltzman WM, Piotrowski-Daspit AS. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release. 2021;335:465–80.

    Article  CAS  PubMed  Google Scholar 

  40. Miyata K, Oba M, Nakanishi M, Fukushima S, Yamasaki Y, Koyama H, et al. Polyplexes from poly(aspartamide) bearing 1,2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity. J Am Chem Soc. 2008;130:16287–94.

    Article  CAS  PubMed  Google Scholar 

  41. Takemoto H, Miyata K, Nishiyama N, Kataoka K. Bioresponsive polymer-based nucleic acid carriers. Adv Genet. 2014;88:289–323.

    Article  CAS  PubMed  Google Scholar 

  42. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A. 2007;104:12982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takemoto H, Miyata K, Hattori S, Ishii T, Suma T, Uchida S, et al. Acidic pH-responsive siRNA conjugate for reversible carrier stability and accelerated endosomal escape with reduced IFNα-associated immune response. Angew Chem Int Ed. 2013;52:6218–21.

    Article  CAS  Google Scholar 

  44. Sun CY, Shen S, Xu CF, Li HJ, Liu Y, Cao ZT, et al. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc. 2015;137:15217–24.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed. 2011;50:6109–14.

    Article  CAS  Google Scholar 

  46. Bikram M, Ahn CH, Chae SY, Lee M, Yockman JW, Kim SW. Biodegradable poly(ethylene glycol)-co-poly(l-lysine)-g-histidine multiblock copolymers for nonviral gene delivery. Macromolecules. 2004;37:1903–16.

    Article  CAS  Google Scholar 

  47. Yang Y, Xu L, Zhu W, Feng L, Liu J, Chen Q, et al. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials. 2018;156:121–33.

    Article  CAS  PubMed  Google Scholar 

  48. Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10:6753–61.

    Article  CAS  PubMed  Google Scholar 

  49. Ke W, Lu N, Japir AAMM, Zhou Q, Xi L, Wang Y, et al. Length effect of stimuli-responsive block copolymer prodrug filomicelles on drug delivery efficiency. J Control Release. 2020;318:67–77.

    Article  CAS  PubMed  Google Scholar 

  50. Sundaram HS, Ella-Menye JR, Brault ND, Shao Q, Jiang S. Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation. Chem Sci. 2014;5:200–5.

    Article  CAS  Google Scholar 

  51. Ranneh AH, Takemoto H, Sakuma S, Awaad A, Nomoto T, Mochida Y, et al. An ethylenediamine-based switch to render the polyzwitterion cationic at tumorous pH for effective tumor accumulation of coated nanomaterials. Angew Chem Int Ed. 2018;57:5057–61.

    Article  CAS  Google Scholar 

  52. Miyata K, Nishiyama N, Kataoka K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev. 2012;41:2562–74.

    Article  CAS  PubMed  Google Scholar 

  53. Corte DD, Schläpfer CW, Daul C. A density functional theory study of the conformational properties of 1,2-ethanediamine: protonation and solvent effects. Theor Chem Acc. 2000;105:39–45.

    Article  Google Scholar 

  54. Gao H, Takemoto H, Chen Q, Naito M, Uchida H, Liu X, et al. Regulated protonation of polyaspartamide derivatives bearing repeated aminoethylene side chains for efficient intracellular siRNA delivery with minimal cytotoxicity. Chem Commun. 2015;51:3158–61.

    Article  CAS  Google Scholar 

  55. Kitano H, Sudo K, Ichikawa K, Ide M, Ishihara K. Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions. J Phys Chem B. 2000;104:11425–9.

    Article  CAS  Google Scholar 

  56. Schlenoff JB. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir. 2014;30:9625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater. 2015;27:15–26.

    Article  CAS  PubMed  Google Scholar 

  58. Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, et al. Effect of charged group spacer length on hydration state in Zwitterionic poly(sulfobetaine) brushes. Langmuir. 2017;33:8404–12.

    Article  CAS  PubMed  Google Scholar 

  59. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.

    Article  CAS  PubMed  Google Scholar 

  60. Matsumura Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Sci. 2021. https://doi.org/10.1111/cas.14983.

  61. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-021-00509-w.

  62. Mi P, Kokuryo D, Cabral H, Wu H, Terada Y, Saga T, et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotech. 2016;11:724–30.

    Article  CAS  Google Scholar 

  63. Tang Y, Xiao G, Shen Z, Zhuang C, Xie Y, Zhang X, et al. Noninvasive detection of extracellular pH in human benign and malignant liver tumors using CEST MRI. Front Oncol. 2020;10:578985.

    Article  PubMed  PubMed Central  Google Scholar 

  64. von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. Chemical exchange saturation transfer (CEST): magnetic resonance imaging in diagnostic oncology. Radiologe. 2021;61:43–51.

    Article  Google Scholar 

  65. Suh J, Paik HJ, Hwang BK. Ionization of poly(ethylenimine) and poly(allylamine) at various pH′s. Bioorg Chem. 1994;22:318–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project for Cancer Research and Therapeutic Evolution (P-CREATE) (JP20 cm0106202) from the Japanese Agency for Medical Research and Development (AMED), Technology Platform Program for Advanced Biological Medicine (JP20am0401018) from AMED, Center of Innovation (COI) program from Japan Science and Technology Agency (JST), Five-star Alliance from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), JSPS KAKENHI Grant-in-Aid for Young Scientists (A) (17H04743) to HT from JSPS, and by JSPS KAKENHI Grant Numbers 18H04163 to NN from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

HT and NN wrote this manuscript.

Corresponding author

Correspondence to Hiroyasu Takemoto.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemoto, H., Nishiyama, N. Construction of nanomaterials based on pH-responsive polymers for effective tumor delivery. Polym J 53, 1353–1360 (2021). https://doi.org/10.1038/s41428-021-00542-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00542-7

Search

Quick links