Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of naturally occurring proteins on graft copolymerization of vinyltriethoxysilane on natural rubber

Abstract

This work presents insights into how naturally occurring proteins affect the graft copolymerization of vinyltriethoxysilane (VTES) on natural rubber (NR) latex. Four NR latexes with different protein contents were subjected to graft copolymerization catalyzed by tert-butyl hydroperoxide (TBHP)/tetraethylene pentamine (TEPA) initiators. The four NR latexes were freshly tapped natural rubber (fresh NR), high-ammonia natural rubber, deproteinized natural rubber (DPNR), and protein-free natural rubber (PFNR). During the graft copolymerization on the studied latexes, VTES conversion depended on the protein content of the NR latexes. The formation and morphology of silica were investigated by Fourier transform infrared spectroscopy, solid-state NMR spectroscopy, and transmission electron microscopy. Among the products, fresh NR-graft-poly(VTES) exhibited the highest tensile strength and highest protein content. Proteins were confirmed to function as catalysts for the hydrolysis and condensation of VTES when graft copolymerization was performed on fresh NR (ammonia-free), fresh NR containing ammonia, and DPNR without TBHP/TEPA initiators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kawahara S, Yusof NH, Noguchi K, Kosugi K, Yamamoto Y. Organic–inorganic nanomatrix structure and properties of related naturally occurring rubbery macromolecules. Polymer. 2014;55:5024–7.

    Article  CAS  Google Scholar 

  2. Yusof NH, Noguchi K, Fukuhara L, Yamamoto Y, Kawahara S. Preparation and properties of natural rubber with filler nanomatrix structure. Colloid Polym Sci. 2015;293:2249–56.

    Article  CAS  Google Scholar 

  3. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–69.

    Article  Google Scholar 

  4. Thuong NT, Dung TA, Yusof NH, Kawahara S. Controlling the size of silica nanoparticles in filler nanomatrix structure of natural rubber. Polymer. 2020;195:122444.

    Article  CAS  Google Scholar 

  5. Ikeda Y, Poompradub S, Morita Y, Kohjiya S. Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Techn. 2008;45:299–306.

    Article  CAS  Google Scholar 

  6. Hench LL, West JK. The Sol-Gel process. Chem Rev. 1990;90:33–72.

    Article  CAS  Google Scholar 

  7. Omer K, Nadir K, Esin B, H. Erdem C, Meltem A, Ertugrul A. Effect of amine catalyst on the preparation of nanometric SiO2 particles and antireflective films via sol-gel method. J Sol-Gel Sci Techn. 2010;56:167–76.

    Article  Google Scholar 

  8. Manabe K, Kobayashi S. Dehydrative esterification of carboxylic acids with alcohols catalyzed by polymer-supported sulfonic acids in water. Adv Synth Catal. 2020;344:270–3.

    Article  Google Scholar 

  9. Thuong NT, Linh NPD, Nghia PT, Yusof NH, Kawahara S. Formation of an in situ nanosilica nanomatrix structure via graft copolymerization of vinyltriethoxysilane onto natural rubber. Polym Adv Technol. 2019;31:1–10.

    Google Scholar 

  10. Zhou Y, Yamamoto Y, Kawahara S. Determination of a suitable condition for graft copolymerization of vinyltriethoxysilane onto natural rubber to form nanomatrix structure. Rubb Chem Technol. 2018;91:767–75.

    Article  CAS  Google Scholar 

  11. Kosugi K, Arai H, Zhou Y, Kawahara S. Formation of organic–inorganic nanomatrix structure with nanosilica networks and its effect on properties of rubber. Polymer. 2012;102:106–11.

    Article  Google Scholar 

  12. Tanaka Y, Mori M, Ute K, Hatada K. StructUre And Biosynthesis Mechanism Of Rubber From Fungi. Rubb Chem Technol. 1990;63:1–7.

    Article  CAS  Google Scholar 

  13. Tata SJ. Distribution of proteins between the fractions of Hevea Latex separated by ultracentrifugation. J Rubb Res Inst Malay. 1980;28:77–85.

    CAS  Google Scholar 

  14. Klinklai W, Saito T, Kawahara S, Tashiro K, Suzuki Y, Sakdapipanich J, et al. Hyperdeproteinized natural rubber prepared with urea. J Appl Polym Sci. 2004;93:555–9.

    Article  CAS  Google Scholar 

  15. Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S. Protein-free natural rubber. Colloid Polym Sci. 2012;290:331–8.

    Article  CAS  Google Scholar 

  16. Nakason C, Kaesaman A, Yimwan N. Preparation of graft copolymers from deproteinized and high ammonia concentrated natural rubber latices with methyl methacrylate. J Appl Polym Sci. 2003;87:68–75.

    Article  CAS  Google Scholar 

  17. Jain S, Goossens JGP, Duin MV. Synthesis, characterization and properties of (vinyltriethoxysilane ‐ grafted PP)/silica nanocomposites. Macromol Symp. 2006;233:225–34.

    Article  CAS  Google Scholar 

  18. Kawahara S, Gannoruwa A, Nakajima K, Liang X, Akiba I, Yamamoto Y. Nanodiamond glass with rubber bond in natural rubber. Adv Funct Mater. 2020;30:1909791.

    Article  CAS  Google Scholar 

  19. Duan P, Li X, Wang T, Chen B, Juhl SJ, Koeplinger D, et al. The chemical structure of carbon nano threads analyzed by advanced solid-state NMR. J Am Chem Soc. 2018;140:7658–66.

    Article  CAS  PubMed  Google Scholar 

  20. Sarkawi SS, Dierkes WK, Noordermeer JWM. The influence of non-rubber constituents on performance of silica reinforced natural rubber compounds. Eur Polym J. 2013;49:3199–209.

    Article  CAS  Google Scholar 

  21. Issa AA, El-Azazy M, Luyt A. Kinetics of alkoxysilanes hydrolysis: an empirical approach. Sci Rep. 2019;9:17624.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by Hanoi University of Science and Technology under grant number T2021-PC-045.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nghiem Thuong Thi or Seiichi Kawahara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thi Nghiem, T., Nguyen, T.N., Yusof, N.H. et al. Effect of naturally occurring proteins on graft copolymerization of vinyltriethoxysilane on natural rubber. Polym J 54, 633–641 (2022). https://doi.org/10.1038/s41428-022-00616-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00616-0

This article is cited by

Search

Quick links