Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sensors for breathing pattern detection

Abstract

This study investigated a sustainable method for preparing PEDOT:PSS/PNIPAM conductive hydrogels. The free radical polymerization of NIPAM to PNIPAM was simply initiated by ultrasonication in an ice bath. This was done in open air rather than spending hours under an N2 purge. The resulting conductive hydrogel had a uniform texture and good flexibility for rapid resistance and color changes when exposed to temperature stimulations. Furthermore, the dual actions of hydrogen bonding and hydrophobic aggregation weaken the Coulomb interaction between PEDOT+ and PSS for better conductivity. When interacting and aligning with the PNIPAM chain, the partial growth of the conjugation of PEDOT+ molecules was evidenced by the redshift of the PEDOT:PSS characteristic peak of Raman spectra for better resistance-temperature responses. The temperature correspondences of the resistance and transparency of the hydrogel were distinctly inversed due to the transition of hydrophilic-hydrophobic interactions when the temperature was changed through the phase transition temperature (PTT). The unique R-T relationship of the thermosensitive conductive hydrogel was used as a wearable sensor to continuously monitor breathing patterns for sleeping patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364:458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang H, Ji M, Yang M, Shi M, Pan Y, Zhou Y, et al. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter. 2021;4:1935–46.

    Article  CAS  Google Scholar 

  3. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5:584–603.

    Article  CAS  Google Scholar 

  4. Cao S, Tong X, Dai K, Xu Q. A super-stretchable and tough functionalized boron nitride/PEDOT:PSS/poly(N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A. 2019;7:8204–9.

    Article  CAS  Google Scholar 

  5. Alsaid Y, Wu S, Wu D, Du Y, Shi L, Khodambashi R, et al. Tunable Sponge‐Like Hierarchically Porous Hydrogels with Simultaneously Enhanced Diffusivity and Mechanical Properties. Adv Mater. 2021;33:e2008235.

    Article  PubMed  CAS  Google Scholar 

  6. Xu X, Ozden S, Bizmark N, Arnold CB, Datta SS, Priestley RD. A Bioinspired Elastic Hydrogel for Solar‐Driven Water Purification. Adv Mater. 2021;33:e2007833.

    Article  PubMed  CAS  Google Scholar 

  7. Li H, Liang Y, Gao G, Wei S, Jian Y, Le X, et al. Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chem Eng J. 2021;415:128988.

  8. Li C, Xue Y, Han M, Palmer LC, Rogers JA, Huang Y, et al. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter. 2021;4:1377–90.

    Article  CAS  Google Scholar 

  9. Son H, Byun E, Yoon YJ, Nam J, Song SH, Yoon C. Untethered Actuation of Hybrid Hydrogel Gripper via Ultrasound. ACS Macro Lett. 2020;9:1766–72.

    Article  CAS  Google Scholar 

  10. Yang W, Yamamoto S, Sueyoshi K, Inadomi T, Kato R, Miyamoto N. Perovskite Nanosheet Hydrogels with Mechanochromic Structural Color. Angew Chem Int Ed Engl. 2021;60:8466–71.

    Article  PubMed  Google Scholar 

  11. Feng H, Fu Q, Du W, Zhu R, Ge X, Wang C, et al. Quantitative Assessment of Copper(II) in Wilson’s Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS Nano. 2021;15:3402–14.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Zhao D, Shea KJ, Li X, Lu X. In situformed thermogelable hydrogel photonic crystals assembled by thermosensitive IPNs. Mater Horiz. 2021;8:932–8.

    Article  PubMed  Google Scholar 

  13. Deng H, Xu X, Zhang C, Su JW, Huang G, Lin J. Deterministic Self-Morphing of Soft-Stiff Hybridized Polymeric Films for Acoustic Metamaterials. ACS Appl Mater Interfac. 2020;12:13378–85.

    Article  CAS  Google Scholar 

  14. Wang Z, Ju Y, Ali Z, Yin H, Sheng F, Lin J, et al. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat Commun. 2019;10:4418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li L, Zeng Z, Chen Z, Gao R, Pan L, Deng J, et al. Microenvironment-Triggered Degradable Hydrogel for Imaging Diagnosis and Combined Treatment of Intraocular Choroidal Melanoma. ACS Nano. 2020;14:15403–16.

    Article  PubMed  CAS  Google Scholar 

  16. Guo J, Yu Y, Zhang D, Zhang H, Zhao Y. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. Research (Wash D C). 2021;2021:7065907.

  17. Oh JH, Hong SY, Park H, Jin SW, Jeong YR, Oh SY, et al. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive. ACS Appl Mater Interfac. 2018;10:7263–70.

    Article  CAS  Google Scholar 

  18. Yue L, Zhang X, Li W, Tang Y, Bai Y. Quickly self-healing hydrogel at room temperature with high conductivity synthesized through simple free radical polymerization. J Appl Polym Sci. 2019;18:47379.

  19. Ge G, Zhang YZ, Zhang W, Yuan W, El-Demellawi JK, Zhang P, et al. Ti3C2TxMXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: a molecular approach. ACS Nano. 2021;15:2698–706.

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Liang Y, He J, Zhang H, Guo B. Two-Pronged Strategy of Biomechanically Active and Biochemically Multifunctional Hydrogel Wound Dressing To Accelerate Wound Closure and Wound Healing. Chem Mater. 2020;32:9937–53.

    Article  CAS  Google Scholar 

  21. Distler T, Boccaccini AR. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review. Acta Biomater. 2020;101:1–13.

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Wang P, Ji Z, Chen Z, Wang J, Ling W, et al. Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Res. 2021;14:4154–62.

  23. Dong H, Li J, Guo J, Lai F, Zhao F, Jiao Y, et al. Insights on Flexible Zinc‐Ion Batteries from Lab Research to Commercialization. Adv Mater. 2021;33:e2007548.

    Article  PubMed  CAS  Google Scholar 

  24. Hsu CP, Mandal J, Ramakrishna SN, Spencer ND, Isa L. Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nat Commun. 2021;12:1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duan J, Yu B, Liu K, Li J, Yang P, Xie W, et al. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy. 2019;57:473–9.

    Article  CAS  Google Scholar 

  26. Cao M, Shen Y, Yan Z, Wei Q, Jiao T, Shen Y, et al. Extraction-like removal of organic dyes from polluted water by the graphene oxide/PNIPAM composite system. Chem Eng J. 2021;405:126647.

  27. Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J. 2019;120:109220.

  28. Lu F, Lin X, Wu Q, Zhou B, Lan R, Zhou S, et al. Observation of Unusual Thermoresponsive Volume Phase Transition Behavior of Cubic Poly(N-isopropylacrylamide) Microgels. ACS Macro Lett. 2020;9:266–71.

    Article  CAS  Google Scholar 

  29. Zheng J, Xiao P, Le X, Lu W, Théato P, Ma C, et al. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments. J Mater Chem C. 2018;6:1320–7.

    Article  CAS  Google Scholar 

  30. Liu M, Song X, Wen Y, Zhu JL, Li J. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS Appl Mater Interfac. 2017;9:35673–82.

    Article  CAS  Google Scholar 

  31. Vahdati M, Ducouret G, Creton C, Hourdet D. Topology-Specific Injectable Sticky Hydrogels. Macromolecules. 2020;53:9779–92.

    Article  CAS  Google Scholar 

  32. Guo B, Hoshino Y, Gao F, Hayashi K, Miura Y, Kimizuka N, et al. Thermocells Driven by Phase Transition of Hydrogel Nanoparticles. J Am Chem Soc. 2020;142:17318–22.

    Article  CAS  PubMed  Google Scholar 

  33. Xiong K, Xu L, Lin J, Mou F, Guan J. Mg-Based Micromotors with Motion Responsive to Dual Stimuli. Research (Wash D C). 2020;2020:6213981.

    CAS  Google Scholar 

  34. Cook MT, Haddow P, Kirton SB, McAuley WJ. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Adv Funct Mater. 2020;30:2008123.

    CAS  Google Scholar 

  35. Mu Q, Zhang Q, Yu W, Su M, Cai Z, Cui K, et al. Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater. ACS Appl Mater Interfac. 2020;12:33152–62.

    Article  CAS  Google Scholar 

  36. Zou M, Li S, Hu X, Leng X, Wang R, Zhou X, et al. Progresses in Tensile, Torsional, and Multifunctional Soft Actuators. Adv Funct Mater. 2021;31:2007437.

    Article  CAS  Google Scholar 

  37. Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. Adv Mater. 2021;33:e2003139.

    Article  PubMed  CAS  Google Scholar 

  38. Zhu QL, Du C, Dai Y, Daab M, Matejdes M, Breu J, et al. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation. Nat Commun. 2020;11:5166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li C, Iscen A, Sai H, Sato K, Sather NA, Chin SM, et al. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat Mater. 2020;19:900–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ma C, Lu W, Yang X, He J, Le X, Wang L, et al. Bioinspired Anisotropic Hydrogel Actuators with On–Off Switchable and Color-Tunable Fluorescence Behaviors. Adv Funct Mater. 2018;28:1704568.

    Article  CAS  Google Scholar 

  41. Downs FG, Lunn DJ, Booth MJ, Sauer JB, Ramsay WJ, Klemperer RG. C. J. Hawker and H. Bayley. Nat Chem. 2020;12:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Li J, Song S, Kang J, Tsao Y, Chen S, et al. Morphing electronics enable neuromodulation in growing tissue. Nat Biotechnol. 2020;38:1031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Zhang X, Liu Y, Rodrigo M, Loftus PD, Aparicio-Valenzuela J, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc Natl Acad Sci USA. 2020;117:14769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feig VR, Tran H, Lee M, Liu K, Huang Z, Beker L, et al. An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels. Adv Mater. 2019;31:e1902869.

    Article  PubMed  CAS  Google Scholar 

  46. Li P, Wang Y, Gupta U, Liu J, Zhang L, Du D, et al. Transparent Soft Robots for Effective Camouflage. Adv Funct Mater. 2019;29:1901908.

    Article  CAS  Google Scholar 

  47. Xia S, Zhang Q, Song S, Duan L, Gao G. Feruloylated Oligosaccharides Alleviate Dextran Sulfate Sodium-Induced Colitis in Vivo. Chem Mater. 2019;31:9522–31.

    Article  CAS  Google Scholar 

  48. Jolhe PD, Bhanvase BA, Patil VS, Sonawance SH. Sonocchemical synthesis of peracetic acid in a continuous flow micro-structured reactor. Chem Eng J. 2015;276:91–6.

    Article  CAS  Google Scholar 

  49. Liu J, Xu W, Kuang Z, Dong P, Yao Y, Wu H, et al. Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation. J Mater Chem C. 2020;8:12092–9.

    Article  Google Scholar 

  50. Tan Y, Wang D, Xu H, Yang Y, Wang XL, Tian F, et al. Rapid Recovery Hydrogel Actuators in Air with Bionic Large-Ranged Gradient Structure. ACS Appl Mater Interfac. 2018;10:40125–31.

    Article  CAS  Google Scholar 

  51. Geng H, Xu Q, Wu M, Ma H, Zhang P, Gao T, et al. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat Commun. 2019;10:1512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics. Small. 2019;15:e1805162.

    Article  PubMed  CAS  Google Scholar 

  53. Kim YS, Cho K, Lee HJ, Chang S, Lee H, Kim JH, et al. Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold. React Funct Polym. 2016;109:15–22.

    Article  CAS  Google Scholar 

  54. Bhat MA, Rather RA, Shalla AH. PEDOT and PEDOT:PSS conducting polymeric hydrogels: A report on their emerging applications. Synth Met. 2021;273:116709.

    Article  CAS  Google Scholar 

  55. Han J, Cui Y, Han X, Liang C, Liu W, Luo D, et al. Super‐Soft DNA/Dopamine‐Grafted‐Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. Adv Sci (Weinh). 2020;7:2000684.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of State Graduate Student Innovation Award No. KYCY20_1832, State Advanced Research for Industry Innovation Grant No. BE2017069, and the Fundamental Research Fund for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Zhang, J. Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sensors for breathing pattern detection. Polym J 54, 793–801 (2022). https://doi.org/10.1038/s41428-022-00626-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00626-y

Search

Quick links