Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polymerization of expanded l-amino acids containing terminal pyridyl groups by silver(I) ions in nonpolar solvent

Abstract

Combinations of chiral ligands with metal ions are very promising for constructing artificial architectures that lead to functional spaces, such as those widely found in biological systems. Previously, expanded poly(l-amino acid) derivatives have been reported to form unique helical structures, depending on the side chain in the crystal. Herein, silver(I) ions in nonpolar solvents were used to polymerize expanded l-lysine and l-ornithine derivatives. Introducing a bulky hydrophobic acyl group into the terminal amino group of the side chain increased the solubility of the amino acid in chloroform. Polymerization proceeded via the formation of head-to-head and tail-to-tail linkages. 1H diffusion-ordered NMR spectroscopy (DOSY) was used to determine the structures of the oligomeric products. Circular dichroism measurements and density functional theory calculations were then used to estimate the overall secondary structures, which were significantly different from each other despite the small difference, namely, with or without the fourth CH2 moiety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leong WL, Vittal JJ. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chem Rev. 2011;111:688–764.

    Article  CAS  Google Scholar 

  2. Uemura K, Kumamoto Y, Kitagawa S. Zipped-up chain-type coordination polymers: unsymmetrical amide-containing ligands inducing β-sheet or helical structures. Chem Eur J. 2008;14:9565–76.

    Article  CAS  Google Scholar 

  3. Khlobystov AN, Blake AJ, Champness NR, Lemenovskii DA, Majouga AG, Zyk NV, et al. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord Chem Rev. 2001;222:155–92.

    Article  CAS  Google Scholar 

  4. Adarsh NN, Dastidar P. Coordination polymers: what has been achieved in going from innocent 4,4’-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem Soc Rev. 2012;41:3039–60.

    Article  CAS  Google Scholar 

  5. Zhang ZY, Deng ZP, Huo LH, Zhao H, Gao S. Well-designed strategy to construct helical silver(I) coordination polymers from flexible unsymmetrical bis(pyridyl) ligands: syntheses, structures, and properties. Inorg Chem. 2013;52:5914–23.

    Article  CAS  Google Scholar 

  6. Sawada T, Matsumoto A, Fujita M. Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sizes channel. Angew Chem Int Ed. 2014;53:7228–32.

    Article  CAS  Google Scholar 

  7. Sawada T, Yamagami M, Akinaga S, Miyaji T, Fujita M. Porous peptide complexes by a folding-and-assembly strategy. Chem Asian J. 2017;12:1715–8.

    Article  CAS  Google Scholar 

  8. Saito A, Sawada T, Fujita M. X-ray crystallographic observation of chiral transformations within a metal-peptide pore. Angew Chem, Int Ed. 2020;59:20367–70.

    Article  CAS  Google Scholar 

  9. Misra R, Saseendran A, Dey S, Gopi HN. Metal-helix frameworks from short hybrid peptide foldamers. Angew Chem, Int Ed. 2019;58:2251–5.

    Article  CAS  Google Scholar 

  10. Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Metal-coordinated supramolecular polymers from the minimalistic hybrid peptide foldamers. Angew Chem, Int Ed. 2021;60:9863–8.

    Article  CAS  Google Scholar 

  11. Sawada T, Inomata Y, Shimokawa K, Fujita M. A metal-peptide capsule by multiple ring threading. Nat Commun. 2019;10:5687.

    Article  CAS  Google Scholar 

  12. Sawada T, Saito A, Tamiya K, Shimokawa K, Hisada Y, Fujita M. Metal-peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers. Nat Commun. 2019;10:921.

    Article  Google Scholar 

  13. Inomata Y, Sawada T, Fujita M. Metal–peptide nonafoil knots and decafoil supercoils. J Am Chem Soc. 2021;143:16734–9.

    Article  CAS  Google Scholar 

  14. Okamura T. Crystal structures of expanded poly(l-leucine) isomers containing bis(pyridine)silver(I) moieties: precise formation of secondary structure depending on the side chain. Chem Eur J. 2018;24:13437–40.

    Article  CAS  Google Scholar 

  15. Okamura T, Tsubouchi K, Onitsuka K. Zigzag-helix transformation of expanded polyvaline induced by racemization. Chem Asian J. 2019;14:2950–2.

    Article  CAS  Google Scholar 

  16. Hasenaka Y, Okamura T, Tatsumi M, Inazumi N, Onitsuka K. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents. Dalton Trans. 2014;43:15491–502.

    Article  CAS  Google Scholar 

  17. Okamura T, Furuya R, Onitsuka K. Regulation of the hydrolytic activity of Mg2+-dependent phosphatase models by intramolecular NH···O hydrogen bonds. J Am Chem Soc. 2014;136:14639–41.

    Article  CAS  Google Scholar 

  18. Okamura T, Kaga T, Yamashita S, Furuya R, Onitsuka K. Snapshot of oxidation of thiolate by diiodine: stabilization of intermediate by NH···S hydrogen bonds. J Org Chem. 2017;82:2187–92.

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford CT, 2010.

  20. Flory PJ. Molecular size distribution in linear condensation polymers. J Am Chem Soc. 1936;58:1877–85.

    Article  CAS  Google Scholar 

  21. Chu Q, Swenson DC, MacGillivray LR. A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew Chem Int Ed. 2005;44:3569–72.

    Article  CAS  Google Scholar 

  22. Lin P, Henderson RA, Harrington RW, Clegg W, Wu CD, Wu XT. New 1- and 2-dimensional polymeric structures of cyanopyridine complexes of agi and cuI. Inorg Chem. 2004;43:181–8.

    Article  CAS  Google Scholar 

  23. Li FF, Ma JF, Song SY, Yang J, Liu YY, Su ZM. Influence of neutral ligands on the structures of silver(I) sulfonates. Inorg Chem. 2005;44:9374–83.

    Article  CAS  Google Scholar 

  24. Li FF, Ma JF, Song SY, Yang J, Jia HQ, Hu NH. Syntheses, structures, and characterizations of four new silver(I) sulfonate coordination polymers with neutral ligands. Cryst Growth Des. 2006;6:209–15.

    Article  CAS  Google Scholar 

  25. Hsiao HL, Wu CJ, Hsu W, Yeh CW, Xie MY, Huang WJ, et al. Diverse Ag(I) complexes constructed from asymmetric pyridyl and pyrimidyl amide ligands: roles of Ag⋯Ag and π–π interactions. CrystEngComm. 2012;14:8143–52.

    Article  CAS  Google Scholar 

  26. Sinnwell MA, Baltrusaitis J, MacGillivray LR. Combination of argentophilic and perfluorophenyl-perfluorophenyl interactions supports a head-to-head [2 + 2] photodimerization in the solid state. Cryst Growth Des. 2015;15:538–41.

    Article  CAS  Google Scholar 

  27. Chen CH, Cai J, Feng XL, Chen XM. Assembly via H-bonds and Ag–Ag attractions of one-dimensional silver(I) complexes of nicotinamide and nicotinic acid with sulfonate counter-anions. Polyhedron. 2002;21:689–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Analytical Instrument Facility, Graduate School of Science, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taka-aki Okamura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, Ta., Tsubouchi, K., Okada, A. et al. Polymerization of expanded l-amino acids containing terminal pyridyl groups by silver(I) ions in nonpolar solvent. Polym J 54, 883–891 (2022). https://doi.org/10.1038/s41428-022-00645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00645-9

Search

Quick links