Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Facile synthesis of amine-substituted cyclosiloxanes via a photocatalytic thiol-ene reaction to generate ketoenamine-linked hybrid networks

Abstract

Multiarmed functional cyclosiloxanes were obtained via a facile synthesis through the photocatalytic thiol-ene reaction of 1,3,5-trivinyl-1,3,5-trimethylcyclosiloxane (D3V), 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclosiloxane (D4V), and 1,3,5,7,9-pentavinyl-1,3,5,7,9-pentamethylcyclosiloxane (D5V) with cysteamine hydrochloride under mild conditions. A subsequent desalting reaction with triethylamine was conducted to obtain amine-functionalized cyclosiloxanes with ring structures (D4A and D5A). The chemical structures were confirmed by nuclear magnetic resonance, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption ionization time-of-flight mass spectra. The regioselectivities of the final products were determined with β-adducts as high as 93% irrespective of the number of cyclosiloxane rings. The amino-functionalized cyclosiloxane monomers underwent a mild Schiff base reaction to obtain hybrid networks. Their morphologies, thermal properties, and porosities were also investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qing G, Cui C. Controlled synthesis of cyclosiloxanes by NHC-catalyzed hydrolytic oxidation of dihydrosilanes. Dalton Trans. 2017;46:8746–50.

    Article  CAS  PubMed  Google Scholar 

  2. Dankert F, von Hänisch C. Siloxane coordination revisited: Si−O bond character, reactivity and magnificent molecular shapes. Eur J Inorg Chem. 2021;2021:2907–27.

    Article  CAS  Google Scholar 

  3. Shim JS, Asthana S, Omura N, Kennedy JP. Novel thermoplastic elastomers. I. Synthesis and characterization of star-block copolymers of PSt-b-PIB arms emanating from cyclosiloxane cores. J Polym Sci A Polym Chem. 1998;36:2997–3012.

    Article  CAS  Google Scholar 

  4. Itami Y, Marciniec B, Kubicki M. Functionalization of vinyl-substituted cyclosiloxane and cyclosilazane via ruthenium-catalyzed silylative coupling reaction. Organometallics. 2003;22:3717–22.

    Article  CAS  Google Scholar 

  5. Demirci A, Yamamoto S, Matsui J, Miyashita T, Mitsuishi M. Facile synthesis of cyclosiloxane-based polymers for hybrid film formation. Polym Chem. 2015;6:2695–706.

    Article  CAS  Google Scholar 

  6. Sun R, Feng S, Zhou B, Chen Z, Wang D, Liu H. Flexible cyclosiloxane-linked fluorescent porous polymers for multifunctional chemical sensors. ACS Macro Lett. 2020;9:43–48.

    Article  CAS  PubMed  Google Scholar 

  7. Kim S, Zhu H, Demirci A, Yamamoto S, Miyashita T, Mitsuishi M. Cyclosiloxane polymer bearing dynamic boronic acid: synthesis and bottom-up nanocoating. Polym Chem. 2019;10:5228–35.

    Article  CAS  Google Scholar 

  8. Zhu H, Akkus B, Gao Y, Liu Y, Yamamoto S, Matsui J, et al. Regioselective synthesis of eight-armed cyclosiloxane amphiphile for functional 2D and 3D assembly motifs. ACS Appl Mater Interfaces. 2017;9:28144–50.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu H, Buchtal TJ, Mitsuishi M. Self-assembling superstructures of cyclosiloxane amphiphiles with complex flower shapes and superhydrophobic properties. Appl Surf Sci. 2021;563:150245.

    Article  CAS  Google Scholar 

  10. Zhu H, Demirci A, Liu Y, Gong J, Mitsuishi M. Robust, reusable, and antioxidative supramolecular adhesive to inorganic surfaces based on water-stimulated hydrogen bonding. ACS Appl Polym Mater. 2022;4:1586–94.

    Article  CAS  Google Scholar 

  11. Zheng P, McCarthy TJ. Rediscovering silicones: molecularly smooth, low surface energy, unfilled, UV/Vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS. Langmuir. 2010;26:18585–90.

    Article  CAS  PubMed  Google Scholar 

  12. Song Y, Chen X, Liang YN, Zhang L, Liu M, Hu X. Bio-inspired reinforcement of cyclosiloxane hybrid polymer via ‘molecular stitching’. Chem Eng J. 2019;368:573–6.

    Article  CAS  Google Scholar 

  13. Liu Y, Demirci A, Zhu H, Cai J, Yamamoto S, Watanabe A, et al. A versatile platform of catechol-functionalized polysiloxanes for hybrid nanoassembly and in situ surface enhanced Raman scattering applications. J Mater Chem C. 2016;4:8903–10.

    Article  CAS  Google Scholar 

  14. Prigyai N, Chanmungkalakul S, Thanyalax S, Sukwattanasinitt M, Ervithayasuporn V. Cyclic siloxanes conjugated with fluorescent aromatic compounds as fluoride sensors. Mater Adv. 2020;1:3358–68.

    Article  CAS  Google Scholar 

  15. Gou Z, Wang A, Tian M, Zuo Y. Pyrene-based monomer-excimer dual response organosilicon polymer for the selective detection of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP). Mater Chem Front. 2022;6:607–12.

    Article  CAS  Google Scholar 

  16. Sinha AK, Equbal D. Thiol−Ene reaction: synthetic aspects and mechanistic studies of an anti-Markovnikov-selective hydrothiolation of olefins. Asian J Org Chem. 2019;8:32–47.

    Article  CAS  Google Scholar 

  17. Bordoni AV, Lombardo MV, Wolosiuk A. Photochemical radical thiol–ene click-based methodologies for silica and transition metal oxides materials chemical modification: a mini-review. RSC Adv. 2016;6:77410–26.

    Article  CAS  Google Scholar 

  18. Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.

    Article  CAS  Google Scholar 

  19. Kim J-S, Yang S, Park H, Bae B-S. Photo-curable siloxane hybrid material fabricated by a thiol–ene reaction of sol–gel synthesized oligosiloxanes. Chem Commun. 2011;47:6051–3.

    Article  CAS  Google Scholar 

  20. Saed MO, Terentjev EM. Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Sci Rep. 2020;10:6609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rózga-Wijas K, Chojnowski J. Synthesis of new polyfunctional cage oligosilsesquioxanes and cyclic siloxanes by thiol-ene addition. J J Inorg Organomet Polym Mater. 2012;22:588–94.

    Article  Google Scholar 

  22. Cole MA, Bowman CN. Synthesis and characterization of thiol–ene functionalized siloxanes and evaluation of their crosslinked network properties. J Polym Sci A Polym Chem. 2012;50:4325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sprung MA. A summary of the reactions of aldehydes with amines. Chem Rev. 1940;26:297–338.

    Article  CAS  Google Scholar 

  24. Segura JL, Mancheño MJ, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev. 2016;45:5635–71.

    Article  CAS  PubMed  Google Scholar 

  25. Kinoshita S, Watase S, Matsukawa K, Kaneko Y. Selective synthesis of cis–trans–cis cyclic tetrasiloxanes and the formation of their two-dimensional layered aggregates. J Am Chem Soc. 2015;137:5061–5.

    Article  CAS  PubMed  Google Scholar 

  26. Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der waals adsorption of gases. J Am Chem Soc. 1940;62:1723–32.

    Article  CAS  Google Scholar 

  27. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  CAS  Google Scholar 

  28. Rissing C, Son DY. Thiol−ene reaction for the synthesis of multifunctional branched organosilanes. Organometallics. 2008;27:5394–7.

    Article  CAS  Google Scholar 

  29. Engelhardt G, Jancke H. Structure investigation of organosilicon polymers by silicon-29 NMR. Polym Bull. 1981;5:577–84.

    Article  CAS  Google Scholar 

  30. Protsak IS, Morozov YM, Dong W, Le Z, Zhang D, Henderson IM. A 29Si, 1H, and 13C solid-state NMR study on the surface species of various depolymerized organosiloxanes at silica surface. Nanoscale Res Lett. 2019;14:160.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tedder JM, Walton JC. The kinetics and orientation of free-radical addition to olefins. Acc Chem Res. 1976;9:183–91.

    Article  CAS  Google Scholar 

  32. Murthy SK, Olsen BD, Gleason KK. Initiation of cyclic vinylmethylsiloxane polymerization in a hot-filament chemical vapor deposition process. Langmuir. 2002;18:6424–8.

    Article  CAS  Google Scholar 

  33. O’Shaughnessy WS, Gao M, Gleason KK. Initiated chemical vapor deposition of trivinyltrimethylcyclotrisiloxane for biomaterial coatings. Langmuir. 2006;22:7021–6.

    Article  PubMed  Google Scholar 

  34. DeBlase CR, Silberstein KE, Truong T-T, Abruña HD, Dichtel WR. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J Am Chem Soc. 2013;135:16821–4.

    Article  CAS  PubMed  Google Scholar 

  35. Segura JL, Royuela S, Mar Ramos M. Post-synthetic modification of covalent organic frameworks. Chem Soc Rev. 2019;48:3903–45.

    Article  CAS  PubMed  Google Scholar 

  36. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc. 2012;134:19524–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bae J-Y, Jang J, Bae B-S. Transparent, thermally stable methyl siloxane hybrid materials using sol-gel synthesized vinyl-methyl oligosiloxane resin. J Sol-Gel Sci Technol. 2017;82:253–60.

    Article  CAS  Google Scholar 

  38. Chandramohan A, Nagendiran S, Alagar M. Synthesis and characterization of polyhedral oligomeric silsesquioxane–siloxane-modified polyimide hybrid nanocomposites. J Compos Mater. 2012;46:773–81.

    Article  CAS  Google Scholar 

  39. Grabowsky S, Hesse MF, Paulmann C, Luger P, Beckmann J. How to make the ionic Si−O bond more covalent and the Si−O−Si linkage a better acceptor for hydrogen bonding. Inorg Chem. 2009;48:4384–93.

    Article  CAS  PubMed  Google Scholar 

  40. Weidenthaler C. Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale. 2011;3:792–810.

    Article  CAS  PubMed  Google Scholar 

  41. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  42. Yamamoto M, Goto S, Tang R, Nomura K, Hayasaka Y, Yoshioka Y, et al. Nano-confinement of insulating sulfur in the cathode composite of all-solid-state Li–S batteries using flexible carbon materials with large pore volumes. ACS Appl Mater Interfaces. 2021;13:38613–22.

    Article  CAS  PubMed  Google Scholar 

  43. Tang R, Taguchi K, Nishihara H, Ishii T, Morallón E, Cazorla-Amorós D, et al. Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. J Mater Chem A. 2019;7:7480–8.

    Article  CAS  Google Scholar 

  44. Timofeeva TV, Dubchak IL, Dashevsky VG, Struchkov YT. Flexibility of siloxane rings and rigidity of ladder-like siloxane polymers: Interpretation on the basis of atom-atom potential functions. Polyhedron. 1984;3:1109–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HZ appreciates financial support from the Toyo Suisan Foundation. MM thanks Toshiaki Ogasawara Memorial Foundation for financial support. The authors are also grateful to Prof. Hirotomo Nishihara (Tohoku University) for his kind support with the nitrogen adsorption tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huie Zhu or Masaya Mitsuishi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Watanabe, Y., Yoshida, N. et al. Facile synthesis of amine-substituted cyclosiloxanes via a photocatalytic thiol-ene reaction to generate ketoenamine-linked hybrid networks. Polym J 54, 1257–1265 (2022). https://doi.org/10.1038/s41428-022-00678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00678-0

Search

Quick links