Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Delocalization suppresses nonradiative charge recombination in polymer solar cells

Abstract

Suppressing nonradiative deactivation of charge transfer (CT) states is pivotal to realizing further improvements in the power conversion efficiencies of polymer solar cells (PSCs). According to the energy gap law, the nonradiative decay rate constant knr scales exponentially with decreasing CT state energy ECT; thereby, as long as knr is governed by the energy gap law, a decrease in ECT will inevitably increase nonradiative deactivation of CT states and hence decrease the power conversion efficiency. Here, we report the nonradiative decay dynamics of CT states generated in various nonfullerene-acceptor-based PSCs by using transient absorption spectroscopy. The absence of a strong correlation between knr and ECT indicates that the energy gap law is not valid for these PSCs and that parameters other than ECT contribute significantly to knr. We found that knr decreased with an increase in materials’ crystallinities, indicating that increasing crystallinity leads to CT state delocalization, which in turn mitigates the nonradiative deactivation of CT states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the results of this work are available from the corresponding author upon reasonable request.

References

  1. Tamai Y, Ohkita H, Benten H, Ito S. Exciton diffusion in conjugated polymers: From fundamental understanding to improvement in photovoltaic conversion efficiency. J Phys Chem Lett. 2015;6:3417–28.

    Article  CAS  PubMed  Google Scholar 

  2. Tamai Y. Delocalization boosts charge separation in organic solar cells. Polym J. 2020;52:691–700.

    Article  CAS  Google Scholar 

  3. Clarke TM, Durrant JR. Charge photogeneration in organic solar cells. Chem Rev. 2010;110:6736–67.

    Article  CAS  PubMed  Google Scholar 

  4. Gao F, Inganäs O. Charge generation in polymer-fullerene bulk-heterojunction solar cells. Phys Chem Chem Phys. 2014;16:20291–304.

    Article  CAS  PubMed  Google Scholar 

  5. Inganäs O. Organic photovoltaics over three decades. Adv Mater. 2018;30:1800388.

    Article  Google Scholar 

  6. Karki A, Gillett AJ, Friend RH, Nguyen TQ. The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv Energy Mater. 2020;11:2003441.

    Article  Google Scholar 

  7. Vandewal K. Interfacial charge transfer states in condensed phase systems. Annu Rev Phys Chem. 2016;67:113–33.

    Article  CAS  PubMed  Google Scholar 

  8. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys Rev Appl. 2015;4:014020.

    Article  Google Scholar 

  9. Benduhn J, Tvingstedt K, Piersimoni F, Ullbrich S, Fan Y, Tropiano M, et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat Energy. 2017;2:17053.

    Article  CAS  Google Scholar 

  10. Azzouzi M, Yan J, Kirchartz T, Liu K, Wang J, Wu H, et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics. Phys Rev X 2018;8:031055.

    CAS  Google Scholar 

  11. Azzouzi M, Kirchartz T, Nelson J. Factors controlling open-circuit voltage losses in organic solar cells. Trends Chem. 2019;1:49–62.

    Article  CAS  Google Scholar 

  12. Saito T, Natsuda S, Imakita K, Tamai Y, Ohkita H. Role of energy offset in nonradiative voltage loss in organic solar cells. Sol RRL. 2020;4:2000255.

    Article  CAS  Google Scholar 

  13. Englman R, Jortner J. The energy gap law for radiationless transitions in large molecules. Mol Phys. 1970;18:145–64.

    Article  CAS  Google Scholar 

  14. Collado-Fregoso E, Pugliese SN, Wojcik M, Benduhn J, Bar-Or E, Perdigón Toro L, et al. Energy-gap law for photocurrent generation in fullerene-based organic solar cells: The case of low-donor-content blends. J Am Chem Soc. 2019;141:2329–41.

    Article  CAS  PubMed  Google Scholar 

  15. Hou J, Inganäs O, Friend RH, Gao F. Organic solar cells based on non-fullerene acceptors. Nat Mater. 2018;17:119–28.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang GY, Zhao JB, Chow PCY, Jiang K, Zhang JQ, Zhu ZL, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev. 2018;118:3447–507.

    Article  CAS  PubMed  Google Scholar 

  17. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev. 2019;48:1596–625.

    Article  CAS  PubMed  Google Scholar 

  18. Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater. 2021;11:2003570.

    Article  CAS  Google Scholar 

  19. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, et al. 18% efficiency organic solar cells. Sci Bull. 2020;65:272–5.

    Article  CAS  Google Scholar 

  20. Zhang T, An C, Bi P, Lv Q, Qin J, Hong L, et al. A thiadiazole-based conjugated polymer with ultradeep homo level and strong electroluminescence enables 18.6% efficiency in organic solar cell. Adv Energy Mater. 2021;11:2101705.

    Article  CAS  Google Scholar 

  21. Dong Y, Cha H, Bristow HL, Lee J, Kumar A, Tuladhar PS, et al. Correlating charge-transfer state lifetimes with material energetics in polymer:non-fullerene acceptor organic solar cells. J Am Chem Soc. 2021;143:7599–603.

    Article  CAS  PubMed  Google Scholar 

  22. Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, et al. A planar electron acceptor for efficient polymer solar cells. Energy Environ Sci. 2015;8:3215–21.

    Article  CAS  Google Scholar 

  23. Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater. 2015;27:1170–4.

    Article  CAS  PubMed  Google Scholar 

  24. Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, et al. Highly efficient fullerene-free polymer solar cells fabricated with polythiophene derivative. Adv Mater. 2016;28:9416–22.

    Article  CAS  PubMed  Google Scholar 

  25. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun. 2016;7:11585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater. 2017;16:363–9.

    Article  CAS  PubMed  Google Scholar 

  27. Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew Chem Int Ed. 2017;56:3045–9.

    Article  CAS  Google Scholar 

  28. Liang Z, Li M, Wang Q, Qin Y, Stuard SJ, Peng Z, et al. Optimization requirements of efficient polythiophene:nonfullerene organic solar cells. Joule. 2020;4:1278–95.

    Article  CAS  Google Scholar 

  29. Tamai Y, Fan Y, Kim VO, Ziabrev K, Rao A, Barlow S, et al. Ultrafast long-range charge separation in nonfullerene organic solar cells. ACS Nano. 2017;11:12473–81.

    Article  CAS  PubMed  Google Scholar 

  30. Umeyama T, Igarashi K, Sasada D, Tamai Y, Ishida K, Koganezawa T, et al. Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chem Sci. 2020;11:3250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saito M, Tamai Y, Ichikawa H, Yoshida H, Yokoyama D, Ohkita H, et al. Significantly sensitized ternary blend polymer solar cells with a very small content of the narrow-band gap third component that utilizes optical interference. Macromolecules 2020;53:10623–35.

    Article  CAS  Google Scholar 

  32. Guo JM, Ohkita H, Benten H, Ito S. Charge generation and recombination dynamics in poly(3-hexylthiophene)/fullerene blend films with different regioregularities and morphologies. J Am Chem Soc. 2010;132:6154–64.

    Article  CAS  PubMed  Google Scholar 

  33. Tamai Y, Ohkita H, Namatame M, Marumoto K, Shimomura S, Yamanari T, et al. Light-induced degradation mechanism in poly(3-hexylthiophene)/fullerene blend solar cells. Adv Energy Mater. 2016;6:1600171.

    Article  Google Scholar 

  34. Wilson JS, Chawdhury N, Al-Mandhary MRA, Younus M, Khan MS, Raithby PR, et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J Am Chem Soc. 2001;123:9412–7.

    Article  CAS  PubMed  Google Scholar 

  35. Spano FC. Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder. Chem Phys. 2006;325:22–35.

    Article  CAS  Google Scholar 

  36. Clark J, Chang J-F, Spano FC, Friend RH, Silva C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl Phys Lett. 2009;94:163306.

    Article  Google Scholar 

  37. Tamai Y, Matsuura Y, Ohkita H, Benten H, Ito S. One-dimensional singlet exciton diffusion in poly(3-hexylthiophene) crystalline domains. J Phys Chem Lett. 2014;5:399–403.

    Article  CAS  PubMed  Google Scholar 

  38. Natsuda S, Saito T, Shirouchi R, Sakamoto Y, Takeyama T, Tamai Y, et al. Cascaded energy landscape as a key driver for slow yet efficient charge separation with small energy offset in organic solar cells. Energy Environ Sci. 2022;15:1545–55.

    Article  CAS  Google Scholar 

  39. Zhang G, Chen X-K, Xiao J, Chow PCY, Ren M, Kupgan G, et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat Commun. 2020;11:3943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu W, Spencer AP, Mukherjee S, Alzola JM, Sangwan VK, Amsterdam SH, et al. Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer:Y6 solar cells. J Am Chem Soc. 2020;142:14532–47.

    Article  CAS  PubMed  Google Scholar 

  41. Natsuda S, Sakamoto Y, Takeyama T, Shirouchi R, Saito T, Tamai Y, et al. Singlet and triplet excited-state dynamics of a nonfullerene electron acceptor Y6. J Phys Chem C. 2021;125:20806–13.

    Article  CAS  Google Scholar 

  42. Cheng P, Zhang M, Lau T-K, Wu Y, Jia B, Wang J, et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv Mater. 2017;29:1605216.

    Article  Google Scholar 

  43. Hoefler SF, Rath T, Pastukhova N, Pavlica E, Scheunemann D, Wilken S, et al. The effect of polymer molecular weight on the performance of PTB7-Th:O-IDTBR non-fullerene organic solar cells. J Mater Chem A 2018;6:9506–16.

    Article  CAS  Google Scholar 

  44. Chen M, Liu D, Li W, Gurney RS, Li D, Cai J, et al. Influences of non-fullerene acceptor fluorination on three-dimensional morphology and photovoltaic properties of organic solar cells. ACS Appl Mater Interfaces 2019;11:26194–203.

    Article  CAS  PubMed  Google Scholar 

  45. Yin Z, Mei S, Chen L, Gu P, Huang J, Li X, et al. Efficient PTB7-Th:Y6:PC71BM ternary organic solar cell with superior stability processed by chloroform. Org Electron. 2021;99:106308.

    Article  CAS  Google Scholar 

  46. Gao M, Liu Y, Xian K, Peng Z, Zhou K, Liu J, et al. Thermally stable poly(3-hexylthiophene):nonfullerene solar cells with efficiency breaking 10%. Aggregate e190 https://doi.org/10.1002/agt2.190.

  47. Howard IA, Mauer R, Meister M, Laquai F. Effect of morphology on ultrafast free carrier generation in polythiophene:fullerene organic solar cells. J Am Chem Soc. 2010;132:14866–76.

    Article  CAS  PubMed  Google Scholar 

  48. Etzold F, Howard IA, Forler N, Cho DM, Meister M, Mangold H, et al. The effect of solvent additives on morphology and excited-state dynamics in PCPDTBT:PCBM photovoltaic blends. J Am Chem Soc. 2012;134:10569–83.

    Article  CAS  PubMed  Google Scholar 

  49. Shoaee S, Subramaniyan S, Xin H, Keiderling C, Tuladhar PS, Jamieson F, et al. Charge photogeneration for a series of thiazolo-thiazole donor polymers blended with the fullerene electron acceptors PCBM and ICBA. Adv Funct Mater. 2013;23:3286–98.

    Article  CAS  Google Scholar 

  50. Tamai Y, Tsuda K, Ohkita H, Benten H, Ito S. Charge-carrier generation in organic solar cells using crystalline donor polymers. Phys Chem Chem Phys. 2014;16:20338–46.

    Article  CAS  PubMed  Google Scholar 

  51. Dimitrov SD, Durrant JR. Materials design considerations for charge generation in organic solar cells. Chem Mater. 2014;26:616–30.

    Article  CAS  Google Scholar 

  52. Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 2014;343:512–6.

    Article  PubMed  Google Scholar 

  53. Jakowetz AC, Böhm ML, Zhang J, Sadhanala A, Huettner S, Bakulin AA, et al. What controls the rate of ultrafast charge transfer and charge separation efficiency in organic photovoltaic blends. J Am Chem Soc. 2016;138:11672–9.

    Article  CAS  PubMed  Google Scholar 

  54. Jakowetz AC, Bohm ML, Sadhanala A, Huettner S, Rao A, Friend RH. Visualizing excitations at buried heterojunctions in organic semiconductor blends. Nat Mater. 2017;16:551–7.

    Article  CAS  PubMed  Google Scholar 

  55. Karuthedath S, Gorenflot J, Firdaus Y, Chaturvedi N, De Castro CSP, Harrison GT, et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat Mater. 2021;20:378–84.

    Article  CAS  PubMed  Google Scholar 

  56. Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J Am Chem Soc. 2019;141:6362–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by JST PRESTO program Grant Number JPMJPR1874, JSPS KAKENHI Grant Numbers 17K14527, 21H02012, and 21H05394, The Murata Science Foundation, The Sumitomo Foundation, and Ogasawara Toshiaki Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Tamai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsuda, Si., Saito, T., Shirouchi, R. et al. Delocalization suppresses nonradiative charge recombination in polymer solar cells. Polym J 54, 1345–1353 (2022). https://doi.org/10.1038/s41428-022-00685-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00685-1

This article is cited by

Search

Quick links