Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Supramolecular chiral emergence in water even after compensating for helix chirality in vesicular helix-peptide-aromatic frameworks

Abstract

Supramolecular chiral emergence from achiral molecules is studied with amphiphilic polypeptides upon forming molecular assemblies of nanosheets and vesicles in water. A newly designed amphiphilic polypeptide contains a hydrophilic poly(Sar) block, two hydrophobic helical blocks, and a π-conjugate block (SL-π-D). The two helical blocks are (L-Leu-Aib)4 and (D-Leu-Aib)4 of right- and left-handed helices, respectively, to compensate for the helical chirality resulting in the achiral molecule of SL-π-D. SL-π-D self-assembled in trifluoroethanol (TFE)/water solutions into uniform nanosheets and vesicles depending on the TFE content in the solutions. The induced Cotton effect due to exciton coupling appears in the achiral π-conjugate block upon self-assembling into nanosheets and vesicles. This supramolecular chiral emergence is enhanced in vesicles compared to nanosheets. The origin of the chirality intrinsically arises from the structure of (helix block)-(π-conjugate block)-(helix block) and further from vesicular morphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shen YH, Wang YF, Hamley IW, Qi W, Su RX, He ZM. Chiral self-assembly of peptides: toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci. 2021;123:101469.

    Article  CAS  Google Scholar 

  2. Park KS, Xue ZY, Patel BB, An H, Kwok JJ, Kafle P, et al. Chiral emergence in multistep hierarchical assembly of achiral conjugated polymers. Nat Commun. 2022;13:2738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niori T, Sekine T, Watanabe J, Furukawa T, Takezoe H. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J Mater Chem. 1996;6:1231–3.

    Article  CAS  Google Scholar 

  4. Lehmann A, Alaasar M, Poppe M, Poppe S, Prehm M, Nagaraj M, et al. Stereochemical rules govern the soft self-assembly of achiral compounds: understanding the heliconical liquid-crystalline phases of bent-core mesogens. Chem Eur J. 2020;26:4714–33.

    Article  CAS  PubMed  Google Scholar 

  5. Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomed Nanobiotechnol. 2013;5:582–612.

    Article  CAS  Google Scholar 

  6. Uji H, Ogawa J, Itabashi K, Imai T, Kimura S. Compartmentalized host spaces accommodating guest aromatic molecules in a chiral way in a helix-peptide-aromatic framework. Chem Commun. 2018;54:12483–6.

    Article  CAS  Google Scholar 

  7. Zhou HC, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev. 2014;43:5415–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mantion A, Massuger L, Rabu P, Palivan C, McCusker LB, Taubert A. Metal-peptide frameworks (MPFs): “Bioinspired” metal organic frameworks. J Am Chem Soc. 2008;130:2517–26.

    Article  CAS  PubMed  Google Scholar 

  9. Dong JQ, Liu Y, Cui Y. Artificial metal-peptide assemblies: bioinspired assembly of peptides and metals through space and across length scales. J Am Chem Soc. 2021;143:17316–36.

    Article  CAS  PubMed  Google Scholar 

  10. Heinz-Kunert SL, Pandya A, Dang VT, Tran PN, Ghosh S, McElheny D, et al. Assembly of pi-stacking helical peptides into a porous and multivariable proteomimetic framework. J Am Chem Soc. 2022;144:7001–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kimura S. Primary to quaternary structures of molecular assemblies. Polym J. 2019;51:739–51.

    Article  CAS  Google Scholar 

  12. Kanzaki T, Horikawa Y, Makino A, Sugiyama J, Kimura S. Nanotube and three-way nanotube formation with nonionic amphiphilic block peptides. Macromol Biosci. 2008;8:1026–33.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda M, Uesaka A, Kimura S. Selective disruption of each part of Janus molecular assemblies by lateral diffusion of stimuli-responsive amphiphilic peptides. Chem Commun. 2015;51:1601–4.

    Article  CAS  Google Scholar 

  14. Watabe N, Kim CJ, Kimura S. Fusion and fission of molecular assemblies of amphiphilic polypeptides generating small vesicles from nanotubes. Biopolymers. 2017;108:e22903.

  15. Son K, Takeoka S, Ito Y, Ueda M. End-sealing of peptide nanotubes by cationic amphiphilic polypeptides and their salt-responsive accordion-like opening and closing behavior. Biomacromolecules. 2022;23:2785–92.

  16. Ueda M, Makino A, Imai T, Sugiyama J, Kimura S. Transformation of peptide nanotubes into a vesicle via fusion driven by stereo-complex formation. Chem Commun. 2011;47:3204–6.

    Article  CAS  Google Scholar 

  17. Matsui H, Ueda M, Hara I, Kimura S. Precise control of nanoparticle surface by host-guest chemistry for delivery to tumor. RSC Adv. 2015;5:35346–51.

    Article  CAS  Google Scholar 

  18. Itagaki T, Ito Y, Ueda M. Peptide flat-rod formation by precise arrangement among enantiomeric hydrophobic helices. J Colloid Interface Sci. 2022;617:129–35.

    Article  CAS  PubMed  Google Scholar 

  19. Kakuta M, Hirata M, Kimura Y. Stereoblock polylactides as high-performance bio-based polymers. Polym Rev. 2009;49:107–40.

    Article  CAS  Google Scholar 

  20. Kim CJ, Ueda M, Imai T, Sugiyama J, Kimura S. Tuning the viscoelasticity of peptide vesicles by adjusting hydrophobic helical blocks comprising amphiphilic polypeptides. Langmuir. 2017;33:5423–9.

    Article  CAS  PubMed  Google Scholar 

  21. Itagaki T, Ueda Y, Itabashi K, Uji H, Kimura S. Joining nanotubes comprising nucleobase-carrying amphiphilic polypeptides. Chimia. 2018;72:842–7.

    Article  CAS  PubMed  Google Scholar 

  22. Storrs RW, Truckses D, Wemmer DE. Helix propagation in trifluoroethanol solutions. Biopolymers. 1992;32:1695–702.

    Article  CAS  PubMed  Google Scholar 

  23. Luo PZ, Baldwin RL. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry. 1997;36:8413–21.

    Article  CAS  PubMed  Google Scholar 

  24. Ishikawa T, Morita T, Kimura S. Unique helical triangle molecular geometry induced by dipole-dipole interactions. Bull Chem Soc Jpn. 2007;80:1483–91.

    Article  CAS  Google Scholar 

  25. Liu MH, Zhang L, Wang TY. Supramolecular chirality in self-assembled systems. Chem Rev. 2015;115:7304–97.

    Article  CAS  PubMed  Google Scholar 

  26. Inai Y, Tagawa K, Takasu A, Hirabayashi T, Oshikawa T, Yamashita M. Induction of one-handed helical screw sense in achiral peptide through the domino effect based on interacting its N-terminal amino group with chiral carboxylic acid. J Am Chem Soc. 2000;122:11731–2.

    Article  CAS  Google Scholar 

  27. Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed. 2013;52:8828–78.

    Article  CAS  Google Scholar 

  28. Ueda M, Seo S, Nair BG, Muller S, Takahashi E, Arai T, et al. End-sealed high aspect ratio hollow nanotubes encapsulating an anticancer drug: torpedo-shaped peptidic nanocapsules. ACS Nano. 2019;13:305–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported partially by JSPS KAKENHI Grant Numbers JP19K15375 and JP 22K14553, and The Kyoto University Foundation. TEM analysis was supported by the Analysis and Development System for Advanced Materials (ADAM) of RISH, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Uji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimoto, Y., Suzuki, Y., Imai, T. et al. Supramolecular chiral emergence in water even after compensating for helix chirality in vesicular helix-peptide-aromatic frameworks. Polym J 55, 877–883 (2023). https://doi.org/10.1038/s41428-023-00781-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00781-w

Search

Quick links