Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of photoresponsive biobased adhesive polymers via the Passerini three-component reaction

Abstract

In this study, adhesive polymers were designed and synthesized using biobased compounds as building blocks. Using the Passerini three-component reaction (Passerini-3CR) as a postpolymerization modification process, photoresponsive phenylpropanoid units were introduced into biobased adhesive polymers via a one-step process that bypassed a protection-deprotection strategy. These biobased adhesive polymers showed good adhesion properties for quartz plates. Photoirradiation affected the adhesion behaviors of the polymers, probably due to the [2 + 2] self-cycloaddition of phenylpropanoid-derived vinyl moieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kopetz H. Renewable resources: build a biomass energy market. Nature. 2013;494:29–31. https://doi.org/10.1038/494029a.

    Article  CAS  PubMed  Google Scholar 

  2. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science. 2014;344. https://doi.org/10.1126/science.1246843.

  3. Rinaldi R. Plant biomass fractionation meets catalysis. Angew Chem Int Ed.2014;53:8559–60. https://doi.org/10.1002/anie.201404464.

    Article  CAS  Google Scholar 

  4. Satoh K. Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym J.2015;47:527–36. https://doi.org/10.1038/pj.2015.31.

    Article  CAS  Google Scholar 

  5. Wang S, Kesava SV, Gomez ED, Robertson ML. Sustainable thermoplastic elastomers derived from fatty acids. Macromolecules. 2013;46:7202–12. https://doi.org/10.1021/ma4011846.

    Article  CAS  Google Scholar 

  6. Siracusa V, Blanco I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers. 2020;12:1641. https://doi.org/10.3390/polym12081641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeshima H, Satoh K, Kamigaito M. Bio-Based Functional Styrene Monomers Derived from Naturally Occurring Ferulic Acid for Poly(vinylcatechol) and Poly(vinylguaiacol) via Controlled Radical Polymerization. Macromolecules. 2017;50:4206–16. https://doi.org/10.1021/acs.macromol.7b00970.

    Article  CAS  Google Scholar 

  8. Heinrich LA. Future opportunities for bio-based adhesives—advantages beyond renewability. Green Chem. 2019;21:1866–88. https://doi.org/10.1039/c8gc03746a.

    Article  CAS  Google Scholar 

  9. Ferdosian F, Pan Z, Gao G, Zhao B. Bio-based adhesives and evaluation for wood composites application. Polymers. 2017;9:70. https://doi.org/10.3390/polym9020070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hemmilä V, Adamopoulos S, Karlsson O, Kumar A. Development of sustainable bio-adhesives for engineered wood panels—a review. RSC Adv. 2017;7:38604–30. https://doi.org/10.1039/c7ra06598a.

    Article  CAS  Google Scholar 

  11. Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polym J.2019;51:945–53. https://doi.org/10.1038/s41428-019-0209-0.

    Article  CAS  Google Scholar 

  12. Yang B, Zhao Y, Wei Y, Fu C, Tao L. The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polym Chem.2015;6:8233–9. https://doi.org/10.1039/C5PY01398D.

    Article  CAS  Google Scholar 

  13. Theato P. Multi-Component and Sequential Reactions in Polymer Synthesis. P. p V–VI. https://doi.org/10.1007/978-3-319-20720-9 (Springer Cham, Switzerland, 2015).

  14. Kakuchi R. Multicomponent reactions in polymer synthesis. Angew Chem Int Ed.2014;53:46–48. https://doi.org/10.1002/anie.201305538.

    Article  CAS  Google Scholar 

  15. Rudick JG. Innovative macromolecular syntheses via isocyanide multicomponent reactions. J Polym Sci Part A. 2013;51:3985–91. https://doi.org/10.1002/Pola.26808.

    Article  CAS  Google Scholar 

  16. Deng XX, Cui Y, Du FS, Li ZC. Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction. Polym Chem.2014;5:3316–20. https://doi.org/10.1039/c3py01705b.

    Article  CAS  Google Scholar 

  17. Jee J-A, Spagnuolo LA, Rudick JG. Convergent Synthesis of Dendrimers via the Passerini Three-Component Reaction. Org Lett.2012;14:3292–5. https://doi.org/10.1021/ol301263v.

    Article  CAS  PubMed  Google Scholar 

  18. Kreye O, Tóth T, Meier MAR. Introducing Multicomponent Reactions to Polymer Science: Passerini Reactions of Renewable Monomers. J Am Chem Soc.2011;133:1790–2. https://doi.org/10.1021/ja1113003.

    Article  CAS  PubMed  Google Scholar 

  19. Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C. Sequence Regulated Poly(ester-amide)s Based on Passerini Reaction. ACS Macro Lett. 2012;1:1300–3. https://doi.org/10.1021/mz300456p.

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Kan X-W, Deng X-X, Song C-C, Du F-S, Li Z-C. Simultaneous dual end-functionalization of peg via the passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci Part A. 2013;51:865–73. https://doi.org/10.1002/pola.26443.

    Article  CAS  Google Scholar 

  21. Kakuchi R, Tsuji R, Fukasawa K, Yamashita S, Omichi M, Seko N. Polymers of lignin-sourced components as a facile chemical integrant for the Passerini three-component reaction. Polym J.2021;53:523–31. https://doi.org/10.1038/s41428-020-00448-w.

    Article  CAS  Google Scholar 

  22. El-Seedi HR, El-Said AM, Khalifa SA, Goransson U, Bohlin L, Borg-Karlson AK. et al. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem.2012;60:10877–95. https://doi.org/10.1021/jf301807g.

    Article  CAS  PubMed  Google Scholar 

  23. Wang SQ, Kaneko D, Kan K, Jin X, Kaneko T. Syntheses of hyperbranched liquid-crystalline biopolymers with strong adhesion from phenolic phytomonomers. Pure Appl Chem.2012;84:2559–68. https://doi.org/10.1351/Pac-Con-12-05-12.

    Article  CAS  Google Scholar 

  24. Thi TH, Matsusaki M, Shi D, Kaneko T, Akashi M. Synthesis and properties of coumaric acid derivative homo-polymers. J Biomater Sci Polym Ed.2008;19:75–85. https://doi.org/10.1163/156856208783227668.

    Article  CAS  PubMed  Google Scholar 

  25. Takeshima H, Satoh K, Kamigaito M. Scalable Synthesis of Bio-Based Functional Styrene: Protected Vinyl Catechol from Caffeic Acid and Controlled Radical and Anionic Polymerizations Thereof. ACS Sustain Chem Eng. 2018;6:13681–6. https://doi.org/10.1021/acssuschemeng.8b04400.

    Article  CAS  Google Scholar 

  26. Kong XZ, Xu ZF, Guan LZ, Di MW. Study on polyblending epoxy resin adhesive with lignin I-curing temperature. Int J Adhes Adhes.2014;48:75–79. https://doi.org/10.1016/j.ijadhadh.2013.09.003.

    Article  CAS  Google Scholar 

  27. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30. https://doi.org/10.1126/science.1147241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee H, Lee BP, Messersmith PB. A reversible wet/dry adhesive inspired by mussels and geckos. Nature. 2007;448:338–41. https://doi.org/10.1038/nature05968.

    Article  CAS  PubMed  Google Scholar 

  29. Matos-Perez CR, White JD, Wilker JJ. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc.2012;134:9498–505. https://doi.org/10.1021/ja303369p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiraishi N, Kaneko D, Taira S, Wang S, Otsuki M, Tagami J. Mussel-mimetic, bioadhesive polymers from plant-derived materials. J Investig Clin Dent.2015;6:59–62. https://doi.org/10.1111/jicd.12054.

    Article  PubMed  Google Scholar 

  31. Kaneko D, Wang SQ, Matsumoto K, Kinugawa S, Yasaki K, Chi DH. et al. Mussel-mimetic strong adhesive resin from bio-base polycoumarates. Polym J.2011;43:855–8. https://doi.org/10.1038/pj.2011.77.

    Article  CAS  Google Scholar 

  32. Wang SQ, Kitamura Y, Hiraishi N, Taira S, Tsuge A, Kaneko T. et al. Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. Polymer. 2019;165:152–62. https://doi.org/10.1016/j.polymer.2019.01.012.

    Article  CAS  Google Scholar 

  33. Haddleton DM, Creed D, Griffin AC, Hoyle CE, Venkataram K. Photochemical Crosslinking of Main-Chain Liquid-Crystalline Polymers Containing Cinnamoyl Groups. Makromol Chem Rapid Commun.1989;10:391–6. https://doi.org/10.1002/marc.1989.030100803.

    Article  CAS  Google Scholar 

  34. Tanaka H, Honda K. Photoreversible reactions of polymers containing cinnamylideneacetate derivatives and the model compounds. J Polym Sci, Polym Chem Ed.1977;15:2685–9. https://doi.org/10.1002/pol.1977.170151113.

    Article  CAS  Google Scholar 

  35. Curme HG, Natale CC, Kelley DJ. Photosensitized Reactions of Cinnamate Esters. J Phys Chem.1967;71:767–70. https://doi.org/10.1021/j100862a046.

    Article  CAS  Google Scholar 

  36. Wang SQ, Kaneko D, Okajima M, Yasaki K, Tateyama S, Kaneko T. Hyperbranched polycoumarates with photofunctional multiple shape memory. Angew Chem Int Ed.2013;52:11143–8. https://doi.org/10.1002/anie.201305647.

    Article  CAS  Google Scholar 

  37. Kaneko T, Thi TH, Shi DJ, Akashi M. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat Mater.2006;5:966–70. https://doi.org/10.1038/nmat1778.

    Article  CAS  PubMed  Google Scholar 

  38. Chauzar M, Tateyama S, Ishikura T, Matsumoto K, Kaneko D, Ebitani K. et al. Hydrotalcites Catalyze the Acidolysis Polymerization of Phenolic Acid to Create Highly Heat-Resistant Bioplastics. Adv Func Mater.2012;22:3438–44. https://doi.org/10.1002/adfm.201200427.

    Article  CAS  Google Scholar 

  39. Bazin A, Duval A, Averous L, Pollet E. Synthesis of Bio-Based Photo-Cross-Linkable Polyesters Based on Caffeic Acid through Selective Lipase-Catalyzed Polymerization. Macromolecules. 2022;55:4256–67. https://doi.org/10.1021/acs.macromol.2c00499.

    Article  CAS  Google Scholar 

  40. Isakova A, Topham PD, Sutherland AJ. Controlled RAFT polymerization and zinc binding performance of catechol-inspired homopolymers. Macromolecules. 2014;47:2561–8. https://doi.org/10.1021/ma500336u.

    Article  CAS  Google Scholar 

  41. Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592–7. https://doi.org/10.1016/j.biomaterials.2008.08.021.

    Article  CAS  PubMed  Google Scholar 

  42. Kakuchi R, Yoshida S, Sasaki T, Kanoh S, Maeda K. Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym Chem.2018;9:2109–15. https://doi.org/10.1039/C7PY01923H.

    Article  CAS  Google Scholar 

  43. Nishimori K, Tenjimbayashi M, Naito M, Ouchi M. Alternating copolymers of vinyl catechol or vinyl phenol with alkyl maleimide for adhesive and water-repellent coating materials. ACS Appl Polym Mater.2020;2:4604–12. https://doi.org/10.1021/acsapm.0c00682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Noriaki Seko and Dr. Masaaki Omichi at the National Institutes for Quantum Science and Technology for their assistance with TG/DTA and DSC measurements.

Funding

RK gratefully acknowledges the Leading Initiative for Excellent Young Researchers and Grant-in-Aid for Scientific Research (C) (grant number: 19K05578) for financial support. RK also acknowledges the S-Membrane Project and the F-Materials Project at Gunma University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Ryohei Kakuchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, LC., Matsubara, K., Takada, K. et al. Synthesis of photoresponsive biobased adhesive polymers via the Passerini three-component reaction. Polym J 55, 1067–1074 (2023). https://doi.org/10.1038/s41428-023-00806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00806-4

Search

Quick links