Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of substituted positions of acetylene groups in benzene rings on the properties of poly(silane arylether arylacetylene)s

Abstract

Performing investigations on the structure-property relationship of poly(silane arylether arylacetylene)s (PSEAs) is very important and instructive for designing novel high-performance polymers. In this work, three bifunctional acetylene-terminated triphenyl-ether monomers with either para-acetylene, meta-acetylene or ortho-acetylene, i.e., 1,3-bis(4'-ethynylphenoxy)benzene (pmp-BEPB), 1,3-bis(3'-ethynylphenoxy)benzene (mmm-BEPB) and 1,3-bis(2'-ethynylphenoxy)benzene (omo-BEPB) were synthesized and used to prepare three PSEA resins, namely, pmp-PSEA, mmm-PSEA and omo-PSEA. The PSEA resins were characterized by 1H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis, and the properties were explored. The resins possess a wide processing window in the following order: pmp-PSEA < mmm-PSEA < omo-PSEA. The DSC results revealed that pmp-PSEA shows the highest reactivity, followed by omo-PSEA and mmm-PSEA. In the cured networks of the resins, the densities increase in the following order: pmp-PSEA-C < mmm-PSEA-C < omo-PSEA-C. Compared with pmp-PSEA-C, mmm-PSEA-C possesses better mechanical properties with a flexural strength of 66.5 MPa and a flexural modulus of 3.71 GPa. The decomposition temperatures of 5% weight loss (Td5) of pmp-PSEA-C and mmm-PSEA-C are over 530 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Itoh M, Iwata K, Ishikawa J, Sukawa H, Kimura H, Okita K. Various silicon-containing polymers with Si(H)-C≡C units. J Polym Sci Polym Chem. 2001;39:2658–69.

    CAS  Google Scholar 

  2. Gao M, Shang C, Li J, Han G, Tang J, Yuan Q, et al. Synthesis and characterization of block copolymers of poly(silylene diethynylbenzene) and poly(silylene dipropargyl aryl ether). Polymers. 2021;13:1511.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Xin H, Lu J, Tang J, Yuan Q, Huang F. Synthesis and properties of poly(dimethylsilylene-ethynylene-phenoxyphenoxyphenylene-ethynylene). High Perform Polym. 2017;29:595–601.

    CAS  Google Scholar 

  4. Ma M, Li C, Liu X, Yuan Q, Huang F. Synthesis and properties of a silicon-containing arylacetylene resin with 2,6-diphenoxypyridine unit. ChemistrySelect. 2020;5:1146–52.

    CAS  Google Scholar 

  5. Ma M, Gong C, Li C, Yuan Q, Huang F. The synthesis and properties of silicon-containing arylacetylene resins with rigid-rod 2,5-diphenyl-[1,3,4]-oxadiazole moieties. Eur Polym J. 2021;143:110192.

    CAS  Google Scholar 

  6. Ma M, Liu X, Li C, Qiao Z, Yuan Q, Huang F. Effects of pendant side groups on the properties of the silicon-containing arylacetylene resins with 2,5-diphenyl-[1,3,4]-oxadiazole moieties. RSC Adv. 2021;11:19656–65.

    CAS  PubMed Central  Google Scholar 

  7. Ma M, Liu X, Li C, Yuan Q, Huang F. A high-performance silicon-containing arylacetylene resin with conjugated naphthalene rings. High Perform Polym. 2022;34:24–32.

    CAS  Google Scholar 

  8. Li C, Han G, Ma M, Tang J, Huang F. Synthesis and properties of poly(silylenebis(ethynylphenoxy)diphenylsulfone. Polym Bull. 2023;80:349–63.

  9. Gong C, Huang X, Li J, Lv S, Zhou Y, Tang J, et al. Perfluorocyclobutyl aryl ether-based poly(silylene arylacetylene)s with a low dielectric constant for advanced wave-transparent composites. Eur Polym J. 2022;181:111655.

    CAS  Google Scholar 

  10. Sidra LR, Chen G, Mushtaq N, Ma K, Bashir B, Fang X. Processable poly(benzoxazole imide)s derived from asymmetric benzoxazole diamines containing 4-phenoxy aniline: synthesis, properties and the isomeric effect. Polym Chem. 2018;9:2785–96.

    CAS  Google Scholar 

  11. Sidra LR, Chen G, Li C, Mushtaq N, Ma K, Fang X. Processable, high Tg polyimides from unsymmetrical diamines containing 4-phenoxy aniline and benzimidazole moieties. Polymer. 2018;148:228–38.

    CAS  Google Scholar 

  12. Jiao Y, Chen G, Mushtaq N, Zhou H, Chen X, Li Y, et al. Synthesis and properties of poly(benzoxazole imide)s derived from two isomeric diamines containing a benzoxazole moiety. Polym Chem. 2020;11:1937–46.

    CAS  Google Scholar 

  13. Liu Y, Xie F, Huang J, Tan J, Chen C, Jiang L, et al. The effect of molecular isomerism on the barrier properties of polyimides: perspectives from experiments and simulations. Polymers. 2021;13:1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baqar M, Agag T, Huang R, Maia J, Qutubuddin S, Ishida H. Mechanistic pathways for the polymerization of methylol-functional benzoxazine monomers. Macromolecules. 2012;45:8119–25.

    CAS  Google Scholar 

  15. Zhang K, Froimowicz P, Han L, Ishida H. Hydrogen-bonding characteristics and unique ring-opening polymerization behavior of ortho-methylol functional benzoxazine. J Polym Sci Polym Chem. 2016;54:3635–42.

    CAS  Google Scholar 

  16. Kolanadiyil SN, Minami M, Endo T. Synthesis and thermal properties of difunctional benzoxazines with attached oxazine ring at the para-, meta-, and ortho-position. Macromolecules. 2017;50:3476–88.

    CAS  Google Scholar 

  17. Osaka I, Abe T, Shinamura S, Takimiya K. Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. J Am Chem Soc. 2011;133:6852–60.

    CAS  PubMed  Google Scholar 

  18. Más-Montoya M, Ortiz RP, Curiel D, Espinosa A, Allain M, Facchetti A, et al. Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in organic field effect transistors. J Mater Chem C. 2013;1:1959–69.

    Google Scholar 

  19. Zhao Z, Zhang F, Zhang X, Yang X, Li H, Gao X, et al. 1,2,5,6-Naphthalenediimide based donor-acceptor copolymers designed from isomer chemistry for organic semiconducting materials. Macromolecules. 2013;46:7705–14.

    CAS  Google Scholar 

  20. Osaka I, Houchin Y, Yamashita M, Kakara T, Takemura N, Koganezawa T, et al. Contrasting effect of alkylation on the ordering structure in isomeric naphthodithiophene-based polymers. Macromolecules. 2014;47:3502–10.

    CAS  Google Scholar 

  21. Singh R, Pagona G, Gregoriou VG, Tagmatarchis N, Toliopoulos D, Han Y, et al. The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor-acceptor copolymers. Polym Chem. 2015;6:3098–109.

    CAS  Google Scholar 

  22. Wang J, Zhang J, Xiao Y, Xiao T, Zhu R, Yan C, et al. Effect of isomerization on high-performance nonfullerene electron acceptors. J Am Chem Soc. 2018;140:9140–7.

    CAS  PubMed  Google Scholar 

  23. Zheng R, Guo Q, Hao D, Zhang C, Xue W, Huang H, et al. Naphthalene core-based noncovalently fused-ring electron acceptors: effects of linkage positions on photovoltaic performances. J Mater Chem C. 2019;7:15141–7.

    CAS  Google Scholar 

  24. Wang H, Wang C, Chen Y, Cao J, Ren X, Hong W, et al. Synthesis and molecular properties of isomeric thienoisoindigo. J Mater Chem C. 2021;9:13218–25.

    CAS  Google Scholar 

  25. Shi Y, Li W, Wang X, Tu L, Li M, Zhao Y, et al. Isomeric acceptor-acceptor polymers: enabling electron transport with strikingly different semiconducting properties in n‑channel organic thin-film transistors. Chem Mater. 2022;34:1403–13.

    CAS  Google Scholar 

  26. Zhang J, Huang J, Du W, Huang F, Du L. Thermal stability of the copolymers of silicon-containing arylacetylene resin and acetylene-functional benzoxazine. Polym Degrad Stabil. 2011;96:2276–83.

    CAS  Google Scholar 

  27. Shen Y, Yuan Q, Huang F, Du L. Effect of neutral nickel catalyst on cure process of silicon-containing polyarylacetylene. Thermochim Acta. 2014;590:66–72.

    CAS  Google Scholar 

  28. Itoh M, Inoue K, Iwata K, Mitsuzuka M, Kakigano T. New highly heat-resistant polymers containing silicon: poly(silyleneethynylenephenyleneethynylene)s. Macromolecules. 1997;30:694–701.

    CAS  Google Scholar 

  29. Li J, Lv S, Gong C, Zhou Y, Huang F. Effect of the linking positions on the benzene ring on properties of poly(silane arylether arylacetylene)s. J Polym Sci. 2022;60:3232–43.

    CAS  Google Scholar 

  30. Okazakia T, Nakagawaa M, Futemma T, Kitagawa T. NMR and DFT studies on persistent carbocations derived from benzo[kl]xanthene, dibenzo[d,d’]benzo[1,2-b:4,3-b’]difuran, and dibenzo[d,d’]benzo[1,2-b:4,5-b’]difuran in superacidic media. J Phys Org Chem. 2016;29:107–11.

    Google Scholar 

  31. Wie JJ, Wang DH, Lee KM, Tan L, White TJ. Molecular engineering of azobenzene-functionalized polyimides to enhance both photomechanical work and motion. Chem Mater. 2014;26:5223–30.

    CAS  Google Scholar 

  32. Sharmoukh W, Ko KC, Noh C, Lee JY, Son SU. Designed synthesis of multi-electrochromic systems bearing diaryl ketone and isophthalates. J Org Chem. 2010;75:6708–11.

    CAS  PubMed  Google Scholar 

  33. Yang R, Ding L, Chen W, Chen L, Zhang X, Li J. Chain folding in main-chain liquid crystalline polyester with strong π-π interaction: an efficient β‑nucleating agent for isotactic polypropylene. Macromolecules. 2017;50:1610–7.

    CAS  Google Scholar 

  34. Ni Y, Li Q, Chen L, Wu W, Qin Z, Zhang Y, et al. Semi-aromatic copolyesters with high strength and fire safety via hydrogen bonds and π-π stacking. Chem Eng J. 2019;374:694–705.

    CAS  Google Scholar 

  35. Pichon PG, David L, Mechin F, Sautereau H. Morphologies of cross-linked segmented polyurethanes: evolution during maturation and consequences on elastic properties and thermal compressive fatigue. Macromolecules. 2010;43:1888–900.

    CAS  Google Scholar 

  36. Janicek M, Cermak R, Obadal M, Piel C, Ponizil P. Ethylene copolymers with crystallizable side chains. Macromolecules. 2011;44:6759–66.

    CAS  Google Scholar 

  37. Han G, Hou J, Wan L, Hao X, Liu X, Lv S, et al. Enhance high‑temperature mechanical performance of a silicon‑containing arylether arylacetylene resin with the aid of a terminal alkyne compound. J Polym Res. 2021;28:421.

    Google Scholar 

  38. Varley RJ, Dao B, Tucker S, Christensen S, Wiggins J, Dingemans T, et al. Effect of aromatic substitution on the kinetics and properties of epoxy cured tri-phenylether amines. J Appl Polym Sci. 2019;136:47383.

    Google Scholar 

  39. Li J, Gong C, Lv S, Huang F. Effects of side alkoxy groups on the arylacetylene unit on properties of poly(silylene arylacetylene)s. Eur Polym J. 2021;160:110774.

    CAS  Google Scholar 

  40. Luo J, Liu X, Ma M, Tang J, Huang F. Dendritic poly(silylene arylacetylene) resins based on 1,3,5-triethynylbenzene. Eur Polym J. 2020;129:109628.

    CAS  Google Scholar 

  41. Ramsdale-Capper R, Foreman JP. Internal antiplasticisation in highly crosslinked amine cured multifunctional epoxy resins. Polymer. 2018;146:321–30.

    CAS  Google Scholar 

  42. Kolanadiyil SN, Minami M, Endo T. Implementation of meta-positioning in tetrafunctional benzoxazines: synthesis, properties, and differences in the polymerized structure. Macromolecules. 2020;53:6866–86.

    Google Scholar 

  43. Martos A, Soto M, Schäfer H, Koschek K, Marquet J, Sebastián RM. Highly crosslinked polybenzoxazines from monobenzoxazines: the effect of meta-substitution in the phenol ring. Polymers. 2020;12:254.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Reyes LQ, Zhang J, Dao B, Varley RJ. Synthesis of tri-aryl ether epoxy resin isomers and their cure with diamino diphenyl sulphone. J Polym Sci. 2020;58:1410–25.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Fundamental Research Funds for the Central Universities (JKD01231701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gong, C., Tang, J. et al. Effect of substituted positions of acetylene groups in benzene rings on the properties of poly(silane arylether arylacetylene)s. Polym J 55, 1307–1315 (2023). https://doi.org/10.1038/s41428-023-00819-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00819-z

Search

Quick links