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Abstract

Staurosporine, together with such examples as penicillin, aspirin, ivermectin and sildenafil, exemplifies the role that
serendipity has in drug discovery and why 'finding things without actually searching for them' retains a prominent role in
drug discovery. Hitherto not clinically useful, due to its potency and promiscuity, new delivery technology is opening up
new horizons for what was previously just the parent compound of innovative, highly-successful anti-cancer agents.

Staurosporine is a naturally occurring, extraordinary che-
mical produced by a soil-dwelling microbe. It revolutio-
nized the field of anti-cancer therapy and is now itself
offering the prospect of yet further advances in human
health, as well as in the control of a variety of pests and
parasites. However, it is illustrative to examine the pathway
by which it was discovered to help provide an influential
evidence base for future drug discovery.

In Nature, microorganisms do not produce meaningless
or futile chemicals, they all have a purpose. In essence, it is
simply that we have yet to discover most of them or identify
their true usefulness for humans. Historically, beneficial
human medications were discovered via trial and error and,
eventually, by scientific identification of the active ingre-
dient in traditional remedies. Crude extracts or purified
chemicals, mostly from natural sources, began to be
screened for biological activity without consideration for
any specific biological target. In other words, ‘Bioactivity
first—Chemical compound second’. However, in the late-
1960s, when lead compounds for antibiotic development
were becoming increasingly scarce, the Omura research
group at Tokyo’s Kitasato Institute envisaged that an
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innovative ‘New way of looking’ was required. Conse-
quently, we embraced a new philosophy to govern the
search for useful chemicals from microbial origins, namely
a ‘Compound first—Bioactivity second’ approach [1].
This concept was exemplified by introduction of a novel
Physico-chemical screening programme, which facilitated
discovery of a diverse range of useful compounds whose
important bioactivity was often identified several years after
discovery (Fig. 1) [2]. The approach also helped overcome
the challenge of exploiting microbes that proved to be dif-
ficult to cultivate using standard practices (99% of the total).
Over the last couple of decades, drug discovery research has
evolved into a classical targeted pharmacology approach,
which now encompasses screening of entire chemical
libraries, in cells or whole organisms, to identify com-
pounds that have a desirable and specific therapeutic effect.

Traditionally, plants formed the basis of human medicine
practiced for thousands of years, and remain highly valued
worldwide as a rich source of therapeutic agents for the
treatment and prevention of diseases and ailments. Over
35,000 plant species are used for medicinal purposes
globally [3]. Following the 1928 discovery of penicillin,
terrestrial microorganisms quickly began to be exploited as
a virtually endless source of structurally diverse bioactive
substances. In Western medicine today, >50% of pharma-
ceutical commodities contain natural products or are syn-
thesized from them, with 10-25% of all prescription drugs
containing one or more plant-derived ingredients [4]. It has
been reported that around 80% of current antimicrobial,
cardiovascular, immunosuppressive and anti-cancer drugs
come from plant origins [5]. Increasingly over the past
century, microorganisms have become the primary source
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Fig. 1 Physico-chemical screening discovery & key bioactivity identification. a Pyrindicin was shown to possess weak anti-microbial and several
pharmacological activities. b NA-337A possessed fat clearing properties. ¢ TM-64 induced weak deteriorated reflex action of cornea in guinea
pigs. d Quinoline-2-methanol affected hypoglycaemic activity in rats. e Dityromycin interacted with ribosomal protein S12 on small subunits to
display anti-microbial activity. f Staurosporine inhibits protein kinases. g Herquline A inhibits platelet aggregation. h Neoxaline inhibits tubulin
polymerization. i Reductinomycin exhibits anti-tumour activity against Ehrlich ascites carcinoma in mice. j Sespendole inhibits mouse macrophage
synthesis of cholesteryl ester and triacylglycerol. k Spoxazomycin exhibits anti-trypanosomal activity against Trypanosoma brucei brucei

of such therapeutic agents, so far yielding a broad
spectrum of highly successful antibiotic agents, including
penicillins, cephalosporins, aminoglycosides, tetracyclines
and macrolides.

Alkaloids retain a leading place in that assemblage, being
produced by a large variety of organisms, including bac-
teria, fungi, animals and especially higher plants, 10-25%
of which contain alkaloids. Alkaloids are a group of diverse
biomolecules, all secondary compounds derived from
amino acids or via the transamination process. These
compounds have been widely used in traditional or modern
medicine or as starting points for drug discovery. They are a
unique group of chemicals, active at different cellular
levels, and critical for fundamental biological processes of
plants, animals and microorganisms. Most known proper-
ties of alkaloids are fundamental to survival. Plant alkaloids
are essentially involved in protection or growth regulation.
In animals, alkaloid-related substances such as serotonin,
dopamine and histamine are important neurotransmitters.
Alkaloids are biotoxic, but not to the organisms that pro-
duce them, their toxicity being directed towards foreign
organisms or cells in which they can alter DNA and
selectively disrupt cells. Moreover, they play a very

important role in the immune systems of animals and plants.
In biomedicine, alkaloids have an extensive range of
pharmacological properties, including analgaesic, anti-
asthma, anti-cancer, anti-arrhythmic, anti-bacterial, anti-
hyperglycaemic, anti-malarial, cholinomimetic and vasodi-
latory. The centuries-old widespread therapeutic use of
alkaloid-containing plants meant that when the first alka-
loids were isolated in the 19th century, they were immedi-
ately exploited in clinical practice [6]. Consequently, the
Kitasato research group concluded that searching for alka-
loids of microbial origin promised a panoply of useful novel
bioactive ingredients with drug-like properties. That
approach has increasingly proved to be both sound and
productive. The search for new therapeutic agents from
natural sources has been rapidly intensifying over the past
40 years, leading to the accumulation of a remarkably
diverse array of over 139,000 natural products [7]. All these
compounds are potential candidates for drug development.
As an example of the impact, between 1981-2006 in the
North American, European, and Japanese markets, 47.1%
of a total of 155 clinically-approved anti-cancer drugs were
derived from Nature [8], with staurosporine being a key
compound in this respect.
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Fig. 2 Staurosporine producing organism. Scanning electron micro-
graph of Lentzea albida AM-2282. Scale bar: 1 ym

In the late-1960s, the Omura group at the Kitasato
Institute decided to proactively pursue the new ‘Compound
first—Bioactivity second’ approach. The team introduced an
innovative Physico-chemical Screening method, initially
using Dragendorff’s reagent, as part of a new search spe-
cifically for alkaloids from naturally occurring micro-
organisms. The goal was to identify and isolate alkaloid
compounds and subsequently to make them available for
screening, either by us or by other research groups. As one
of the findings, in 1976 the group discovered the world’s
first indolocarbazole compound [9]. Isolated from a soil-
dwelling microorganism, Streptomyces staurosporeus (nOw
Lentzea albida), we code-named the compound AM-2282,
later giving it the name ‘staurosporine’ (Fig. 2.). At the time,
none of us could ever have imagined that staurosporine
would turn out to be the forerunner of a new class of novel
drugs that would go on to revolutionize cancer treatment.
Nor that it would become a globally leading chemical
reagent and outstanding drug lead compound, attracting
global attention from chemists, biologists, physicians and
the pharmaceutical industry [10]. Or that its widespread use
and impact would help emphasize that committed research
collaborations between academia and industry can create
and expedite enormous progress and substantial improve-
ments in public health and welfare worldwide.

Staurosporine was extracted from a culture of a soil
sample collected in Iwate Prefecture, Japan and its exact
molecular structure determined later in 1994 by X-ray
crystallography [11]. Our initial assays demonstrated that
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Fig. 3 Staurosporine research articles from 1977-2014. Data source is
SciFinder® (Chemical Abstracts Service)

staurosporine possessed promising anti-fungal and hypo-
tensive properties but lacked any anti-bacterial bioactivity
[9]. Subsequent research reported that the compound also
demonstrated platelet aggregation inhibition [12] and anti-
hypertensive properties [13]. Of much greater significance,
a decade after we discovered the compound, another group
of researchers made the breakthrough observation that
staurosporine was an extremely potent but non-specific
inhibitor of protein kinases, particularly tyrosine kinases,
and that it had a remarkably strong cytotoxic effect on
cancer cells. In 1986, the isolation and complete structure
elucidation of K252a, a biosynthetic precursor of staur-
osporine, was announced, with the compound proving to be
a potent protein kinase C (PKC) inhibitor, with an ICsy of
32nM [14]. The same year it was reported that staur-
osporine itself also inhibited PKC but with a slightly higher
affinity (ICs5o=2.7nM) [15]. This discovery heralded
enormous potential for using staurosporine as an anti-cancer
agent. More than 90 tyrosine kinases are known to be cri-
tical for malignant transformation and tumour angiogenesis
[16]. Tyrosine kinase inhibitors (TKIs), which can target
both receptor and cytoplasmic kinases, can improve cancer
outcomes by controlling the activation of kinases in cancer
cells [17, 18]. However, although the compound remains
one of the most potent inhibitors ever found, it proved to be
extremely promiscuous, interacting with many other kinases
(over 250 known to date), including those in blood plasma.
Interaction with kinases with a Kd less than 3 pM [19]
precluded its therapeutic use. Nevertheless, it served as a
unique, invaluable starting point for implementing function-
oriented synthesis strategies [20], stimulating a compre-
hensive 20-year flow of research reports (Fig. 3.).

Over the last 30 years, indolocarbazole compounds have
been isolated from a variety of organisms, including bac-
teria, fungi and invertebrates. Post-1986, development of
small-molecule kinase inhibitors quickly became one of the
most widely and intensely pursued areas of drug discovery
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Fig. 4 Model of signal
transduction and staurosporine
inhibition. ANP, Atrial
natriuretic peptide;

R, Receptors;

PIP,, Phosphatidylinositol Acetylch.ol.l ne
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c¢GMP, Cyclic-3',5'-guanosine
monophosphate; cAMP, Cyclic-
3',5'-adenosine monophosphate;
PKC, Protein kinase C; MLCK,
Myosin light chain kinase;
PKG, cGMP-dependent protein
kinase; PKA, cAMP-dependent
protein kinase; GTP, Guanosine
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worldwide, especially for combatting cancer via targeted
therapy. The unusual architecture of the indolocarbazoles,
coupled with their excellent biological activity, led many
researchers to attempt to synthesize it, culminating in the
first total synthesis of staurosporine reported by the
Danishefsky and Wood groups in 1996 [21, 22].

Protein kinases regulate essential aspects of cells,
including metabolism, cell cycle progression and cytoske-
letal arrangement. They catalyze the reversible transfer of
the y-phosphate group of adenosine triphosphate (ATP)
onto a substrate, mediating signal transduction and thereby
regulating cellular processes, including cell proliferation,
survival, apoptosis, metabolism, transcription and differ-
entiation, as well as other systems (Fig. 4.) [23, 24]. It was
hypothesized that a vertebrate genome could encode more
than 1,000 protein kinases but an analysis of the human
genome published at the turn of the century identified only
518 protein kinase genes [25]. The actual number of protein
kinases in the human genome remains a matter of con-
jecture, with Kinasenet (http://www kinasenet.ca) providing
information on over 530 and other researchers reporting that
there are over 600 putative kinase genes in the human
genome, some 3% of all human protein-coding genes [26].
All catalytic domains of the kinases share homologous
structures for binding ATP, binding which occurs at varying
degrees of strength and specificity depending on the com-
pound. Pharmacological and pathological evidence has
confirmed that kinases are promising drug targets for
tackling not just cancer but a broad spectrum of diseases
[27-29], including inflammatory conditions [30, 31], central
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nervous system (CNS) disorders [32], cardiovascular dis-
eases [33] and diabetes [34].

The degree of specificity, or lack of it, has traditionally
been the major obstacle to kinase drug discovery. But that
appears to be changing. Still one of the most potent inhi-
bitors found, the lack of specificity shown by staurosporine
has, to date, prevented it from being used for clinical pur-
poses. But it has had a paramount and unique role as the
parent compound for a variety of highly successful deri-
vatives and analogues. Initial research on staurosporine led
to identification and development of the pharmacophore
model which, in turn, led to the synthesis of kinase inhi-
bitors with greater specificity, effective against tyrosine
kinases, PKC, cyclin-dependent kinases and G-protein-
coupled receptor kinases (Fig. 5). The new targetted therapy
approach produced drugs having a higher specificity
towards tumour cells, usually with less toxicity. The end
product, rationally-designed kinase inhibitors also proved to
be useful in combination with traditional indiscriminate
cytotoxic chemotherapy or radiation treatment to produce
an overall synergistic, complementary and significantly
improved anti-cancer effect [35].

Since the mid-1980s, protein kinases have been the pri-
mary cellular targets with respect to anti-cancer agents,
becoming the second most important group of drug targets,
after G-protein-coupled receptors [36], with kinases in
general and tyrosine kinases in particular accounting for
almost half of all newly approved anti-cancer drugs [37].
The ground-breaking approval by the US Food and Drug
Administration (FDA) of the first kinase inhibitor, imatinib

SPRINGER NATURE
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—which is derived directly from staurosporine via a phe-
nylaminopyrimidine derivative (Fig. 6.)—occurred in 2001.
Fortunately, this inaugural protein kinase inhibitor, released
onto the market under the Novartis trade name Gleevec/
Glivec®, proved to be extremely selective, well tolerated by
patients and with few side effects [38—40]. It revolutionized
the treatment of chronic myeloid leukaemia (CML), a
cancer of white blood cells, reducing it from being a
potentially fatal cancer to the status of a chronic disease.
Imatinib changed the prognosis for CML so dramatically
that patients diagnosed early and starting imatinib treatment
have a normal life expectancy [41, 42] compared with a
historical average survival time of 2 to 3 years. Imatinib was
followed by a steady stream of approvals for similar com-
pounds throughout the first decade of this century, almost
one new approval annually on average. Thereafter, a cas-
cade of new approvals has occurred over the last five years,
the FDA approving a total of 37 small molecule kinase
inhibitors by 2017 (Table 1 and Supplemental Figure 1.).
This represents an unmatched achievement in the history of
pharmaceutical research.

Among other staurosporine derivatives (Fig. 7.), UCN-01
(7-hydroxystaurosporine), which is identical to a natural
product, inhibits several protein kinases and is currently in
clinical trials against leukaemias, lymphomas, advanced solid
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tumours, melanomas and small-cell lung cancer. It also
enhances the cytotoxicity of other anti-cancer drugs [43].
Lestaurtinib, inhibits autophosphorylation and signalling of
neurotrophin-specific Trk receptors and displays marked anti-
tumour activity [44]. Midostaurin, a semi-synthetic derivative
of staurosporine, is also a potent but non-specific protein
kinase inhibitor, notably of PKC, VEGF and FLT3, pre-
venting tumour angiogenesis and cell proliferation, and is
currently being tested against acute myeloid leukaemia [45].

Currently, >3,000 compounds, active against a wide
range of protein kinases, are being investigated pre-
clinically for various cancers, ophthalmic diseases, central
nervous system disorders, osteoporosis and other ailments,
with >130 novel TKIs undergoing clinical trials [46]. As an
indication of the enormous focus on these compounds, both
in industry and academia, over 1 million kinase research
papers have been published, >5,000 crystal structures of
kinases have been identified, plus inhibition assays have
been developed for over 80% of the human kinome. Around
one-third of all protein targets currently under investigation
in the pharmaceutical industry are either protein or lipid
kinases [47] and kinase inhibitors now make up a major
portion of all newly-approved drugs [40]. Nevertheless, so
far, small-molecule kinase inhibitors have been identified
for only 20-30% of the human kinome.
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Among the clinically approved kinase inhibitors
(Fig. 8.), most are tyrosine kinase inhibitors (TKIs) [48], a
handful are serine/threonine kinase inhibitors, and idelalisib
and copanlisib, are phosphoinositide 3-kinase inhibitors
(Fig. 8f). The molecular structures of the various TKIs are
shown in Fig. 8a—f. The majority of TKIs are promiscuous,
inhibiting 10—100 off-target kinases, with varying degrees
of potency [49, 50]. Most are reversible inhibitors, only
five, afatinib, ibrutinib, osmertinib, neratinib and acalabru-
tinib, are irreversible. The irreversible inhibitors are
expected to produce greater specificity and potency,
although concerns have been raised regarding potential
toxicities.

As an indicator of the economic impact of these drugs,
worldwide sales of ibrutinib alone are forecast to reach $9
billion by 2020 [51], with the global inhibitors market
estimated to be worth $105 billion. In 2014, sales of small
molecule kinase inhibitors generated around $18.5 billion,
while the global market for protein kinase inhibitors is
forecast to grow to $31.2 billion by 2019, with further
expansion to 2025 [52-54]. If current trends continue, up to

50 kinase inhibitors could be in clinical use by the end of
the decade, including new rationally designed drugs [40].
The pharmaceutical industry spends some $135 billion
annually on R&D and has been the main driving force in
drug discovery and development in pursuit of potential
profit. Academia has been responsible for advancing
knowledge, fundamentals and understanding of diseases,
pathology and biomedical mechanisms, identifying relevant
biochemical targets in the process. The success of Gleevec®
reinforced the value of good target ID, target validation, hit
ID, lead optimization and accurate pre-clinical assessment.
Furthermore, it re-emphasized the essential role of colla-
boration and committed partnerships between academia
(University of Pennsylvania/University of Chicago/Oregon
Health & Science University) and industry (Novartis),
which had been demonstrated earlier by the research
collaboration that had been established between the Kitasato
Institute and Merck and Co. Inc. which saw the discovery
and development of ivermectin. The immeasurable value
of such partnerships is emphasized by the recent Accel-
erating Medicines Partnership (AMP), a $230 million
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Table 1 FDA-approved small molecule kinase inhibitors (2001-2017)

Small molecule FDA- Brand Developer Main therapeutic objective Main target
approved name
Abl inhibitors (Fig. 8a)
Imatinib 2001 Gleevec Novartis CML Abl, PDGFR, c-Kit
Dasatinib 2006 Sprycel Bristol-Myers Squibb CML Abl, Src, c-Kit, c-KitP8!6V
Nilotinib 2007 Tasigna Novartis CML Imatinib-resistant Ber-Abl mutations,
except for T3151
Bosutinib 2012 Bosulif Pfizer CML Abl, Src
Ponatinib 2012 Iclusig ARIAD CML Abl, Ab]T3!!
ALK inhibitors (Fig. 8b)
Crizotinib 2011 Xalkori Pfizer NSCLC ALK, c-Met
Ceritinib 2014 Zykadia Novartis NSCLC ALK
Alectinib 2015 Alecensa  Genentech NSCLC ALK, ALK AL KRIZ75Q
Brigatinib 2017 Alunbrig ~ ARID NSCLC ALK
Raf inhibitors (Fig. 8c)
Sorafenib 2005 Nexavar Bayer HCC, RCC c-Raf
Vemurafenib 2011 Zelboraf ~ Genentech Malignant melanoma B-RafV%"E ¢_Raf
Dabrafenib 2013 Tafinlar GlaxoSmithKline Malignant melanoma B-Raf, B-RafV®E, ¢-Raf
EGFR inhibitors (Fig. 8d)
Gefitinib 2003 Iressa AstraZeneca NSCLC EGFR
Erlotinib 2004 Tarceva OSI Pharmaceuticals, NSCLC, Pancreatic cancer EGFR
Genentech
Lapatinib 2007 Tykerb Novartis NSCLC, HER2-positive EGFR, HER2
metastatic breast cancer
Afatinib 2013 Gilotrif ~ Boehringer Ingelheim NSCLC EGFR, EGFRM¥%R  EGERL838R/T790M
Osimertinib 2015 Tagrisso  AstraZeneca NSCLC EGFRExon 19 deletion ' g GRR L8SSR/TT90M
Neratinib 2017 Nerlynx Puma Biotech Breast cancer/HER2™ EGFR family
VEGFR inhibitors (Fig. 8e)
Sunitinib 2006 Sutent Pfizer RCC, GIST, pNET VEGFR2, PDGFRf
Pazopanib 2009 Votrient GlaxoSmithKline RCC, Soft-tissue sarcoma VEGFR, PDGFR, FGFR
Vandetinib 2011 Caprelsa  AstraZeneca MTC VEGFR2
Axitinib 2012 Inlyta Pfizer RCC VEGFR, PDGFR, c-Kit
Regorafenib 2012 Stivarga Bayer GIST VEGFR, PDGFR@, c-Kit, RET, c-Raf
Cabozantinib 2012 Cabometyx Ipsen, Exelixis RCC, MTC VEGFR2, c-Met, RET
Nintedanib 2014 Vargatef =~ Boehringer Ingelheim NSLCS VEGFR, PDGFR, FGFR
Lenvatinib 2015 Lenvima Eisai RCC, MTC VEGFR, PDGFR, FGFR
Other kinases inhibitors (Fig. 8f)
Ruxolitinib 2011 Jakafi Novartis Myelofibrosis Jak1/2
Tofacitinib 2012 Xeljanz Pfizer Rheumatoid arthritis Jak3
Ibrutinib 2013 Imbruvica Pharmacyclics LLC, MCL, CLL Btk
Janssen Biotech
Trametinib 2013 Mekinist ~ GlaxoSmithKline Malignant melanoma MEK1/2
Idelalisib 2014 Zydelig Gilead Sciences CLL, NHL PI3K

SPRINGER NATURE
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Table 1 (continued)

Small molecule FDA- Brand Developer Main therapeutic objective Main target
approved name

Palbociclib 2015 Ibrance Pfizer Breast cancer/HR', HER2 CDK4/6
Ribociclib 2017 Kisqali Novartis Breast cancer/HR™, HER2® CDK4/6
Abemaciclib 2017 Verzenio Lilly Breast cancer/HR™, HER2 CDK4/6
Acalabrutinib 2017 Calquence AstraZeneca MCL Btk
Copanlisib 2017 Aliqopa Bayer FL PI3K
Midostaurin 2017 Rydapt Novartis AML/FLT3 mutation Multikinase

CML, Chronic myelogenous leukaemia; NSCLC, Non-small cell lung carcinoma; HCC, Hepatocellular carcinoma (type of liver cancer); RCC,
Renal cell carcinoma (type of kidney cancer); GIST, Gastrointestinal stromal tumour; pNET, Pancreatic neuroendocrine tumour; MTC, Medullary
thyroid cancer; MCL, Mantle cell lymphoma; CLL, Chronic lymphocytic leukaemia; NHL, Non-hodgkin lymphoma; HR, Hormone receptor; FL,
Relapsed follicular lymphoma; AML, Acute myeloid leukaemia; FLT3, FMS-like tyrosine kinase 3; Abl, Abelson murine leukaemia viral
oncogene homologue 1; PDGFR, Platelet-derived growth factor receptor; Ber, Breakpoint cluster region protein; ALK, Anaplastic lymphoma
kinase; EGFR, Epidermal growth factor receptor; VEGFR, Vascular endothelial growth factor receptor; RET, Rearranged during transfection;
Jak, Janus kinase; Btk, Bruton’s tyrosine kinase; MEK, Mitogen-activated protein kinase kinase; PI3K, Phosphoinositide 3-kinase; CDK, Cyclin-

dependent kinase

initiative set up between the US’s National Institutes of
Health (NIH), 10 major pharmaceutical companies and
several Non-Governmental Organisations (NGOs) working
on specific diseases, to advance and accelerate drug dis-
covery projects, focussing on Alzheimer’s disease, Type-2
diabetes and two autoimmune diseases, lupus and rheuma-
toid arthritis, the approval of tofacitinib in 2012 having
established the concept for a new treatment for arthritis.
Natural products, such as staurosporine, which usually
contain pharmacophores and scaffolds that differ from most
synthetic kinase inhibitors, are a useful source to inspire the
synthesis of novel compounds and subsequent construction
of libraries with expanded structural diversity. This was
clearly demonstrated by imatinib, with its origins in staur-
osporine, which has long been the subject of various
Structure/Activity Relationship (SAR) studies to guide the
design of next-generation inhibitors and provide a deeper
understanding of the inhibition mechanism.
Ground-breaking understanding of cellular signalling
cascades at the molecular level has led to major advances in
kinase research over the past few decades. During that
period, the constant challenge has been the daunting task of
developing kinase inhibitors with potent inhibition against
desirable targets and minimal interactions with accidental
targets. Initially, selective kinase inhibitors were actively
pursued. However, recent thinking has switched to adopt a
theory that inhibitors with favourable selectivity or multi-
target selectivity might be more suitable for cancer treat-
ment. It has become clear that kinase inhibitors do not have
to be absolutely selective; preferably, a good selectivity
profile is needed to balance efficacy and toxicity. The tra-
ditional Western approach to medicine has been a reduc-
tionist one, with industry and regulators focussing
predominantly on a single target. Yet some of the most

historically successful drugs, such as aspirin, serotonin re-
uptake inhibitors, as well as imatinib, all act on multiple
targets, effectively meaning a single drug treats several
diseases, a circumstance defined as ‘Polypharmacology’
[55]. Industry has usually been driven to develop drugs that
have singular specificity and high affinity but there is little
evidence that either is a prerequisite for either safety or
efficacy. Recently, the goal of drug design appears to have
been rapidly changing to the 'one drug, multiple targets'
concept, such that Polypharmacology is fast becoming the
new paradigm in drug discovery. This will expedite iden-
tification of drug targets, including 'secondary targets', as
well as accelerating the discovery of new applications for,
and re-purposing of, existing molecules [56].

All currently used TKIs are administered orally, with many
having a lengthy elimination half-life. Although staurosporine
is the most potent protein kinase inhibitor so far discovered,
persistent issues of pharmacokinetics, toxicity and non-
specificity have prevented it from being safely delivered to
tumours, meaning it cannot be used in cancer treatment.
However, recent innovative drug re-formulation initiatives
open up the prospect of the drug being used clinically.
Liposome-based delivery mechanisms have been employed to
enhance drug efficacy and lower toxicity. A novel process has
been developed to encapsulate staurosporine in PEG liposome
nanoparticles efficiently, with a favourable drug release pro-
file. When injected into a mouse gliobastoma model, liposo-
mal staurosporine accumulated in tumours and suppressed
them with no apparent side effects [57]. This has since been
refined to achieve a 100% drug loading efficiency within 15
min of incubation at a drug-to-lipid ratio of 0.31 (mol) via an
ammonium gradient. The staurosporine nanoparticles proved
stable in storage and in the presence of serum. Consequently,
compared with free staurosporine, a 3-fold higher dose could
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be delivered and safely tolerated by BALB/c mice, resulting
in almost complete growth inhibition of multidrug-resistant
breast tumours, while less concentrated free staurosporine
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only exhibited moderate activity, the researchers concluding
that the new delivery method could be used for effective
cancer treatment [58].
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Recently, staurosporine has also begun to show promise in
tackling parasites, with parasite signalling pathways now
attracting increasing attention as possible drug targets.
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Protein kinases are essential in the growth and proliferation
of malarial parasites [59] as well as tuberculosis myco-
bacteria [60]. Apoptosis in single-cell parasites, such as
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Trypanosoma and Leishmania, has been increasingly exam-  research has identified critical roles for protein kinases in the
ined [61-64]. Staurosporine has been shown to induce cell ~ growth and infectivity of trypanosomatid parasites, with
death in T. brucei [65] and genetic and biochemical substantial drug development programmes now focussing on
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staurosporine-class  anti-parasitic = drug  development
[55-59, 66-70]. The LEISHDRUG Consortium is employing
a multidisciplinary approach to reveal Leishmania kinases
associated with parasite-specific pathways that can be
exploited to expedite anti-leishmanial drug development.

In addition, it has recently been reported that staur-
osporine possesses insecticidal properties, inducing apop-
tosis in lepidopteran Sf9 cell lines, the authors suggesting
that the compound could have potential as an insecticide
against lepidopteran agricultural pests [71].

In fungi, kinases regulate signalling governing drug
resistance, stress adaptation and pathogenesis. Currently,
research is being concentrated on the opportunistic fungal
pathogen, Candida albicans, a leading cause of morbidity
and mortality in immunocompromised humans, killing
around 40% of people with systemic bloodstream infection.
Globally, candidiasis is one of the most frequent hospital
acquired infections, with around 60,000 cases of systemic
candidiasis annually, costing an estimated $2—4 billion, in the
USA alone [72]. Staurosporine is capable of evading or
negating fungal drug resistance, thereby expanding the range
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of chemical scaffolds affecting drug resistance and virulence
traits. It potentiates the efficacy of azoles and echinocandins
via inhibition of Pkcl [73] and induces fungal morphogen-
esis via a mechanism that is independent of Pkcl but which
involves adenyl cyclase Cyrl and the cyclic AMP-dependent
protein kinase A (cAMP-PKA). The cAMP-PKA signalling
cascade is critical for morphogenesis and EFG1 is an
important regulator for the switch from yeast like cells to
filamentous cells, that transition being recognised as one of
the key factors in the virulence of C. albicans [74, 75].
Researchers conclude that staurosporine can not only
improve understanding of fungal virulence mechanisms but
can also be a useful compound in the development of novel,
customised anti-fungal compounds [76].

Having been the chemical origin of the revolutionary
change away from indiscriminate cell death arising through
cytotoxic cancer therapy towards a more targeted apoptosis
approach, it is eminently possible that staurosporine may
continue to be an increasingly innovative and useful che-
mical. Continuing research on this multifaceted compound
is indicating increasingly beneficial and diverse uses for this
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remarkable chemical, in biomedical, agricultural and other
applications.
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