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Abstract
Teleocidin B, with its unique indolactam-terpenoid scaffold, is a potent activator of protein kinase C. This short review
summarizes our recent research progress on the biosynthesis of teleocidins in Streptomyces blastmyceticus NBRC 12747.
We first identified the biosynthetic genes for teleocidin B, which include genes encoding a non-ribosomal peptide synthetase
(tleA), a cytochrome P450 monooxygenase (tleB), an indol prenyltransferase (tleC), and a C-methyltransferase (tleD).
Notably, the tleD gene is located outside the tleABC cluster. Our in vivo and in vitro analyses revealed that TleD not only
catalyzes the C-methylation of the prenyl chain but also produces the indole-fused cyclic terpene structure. This is the first
report of terpene cyclization initiated by the C-methylation of the prenyl double bond. In contrast, TleC catalyzes the
geranylation of the C-7 position of the indole ring, in the reverse fashion. Our X-ray crystallographic analyses provided the
structural basis for the reverse prenylation reactions, and structure-based mutagenesis successfully resulted in the production
of unnatural, novel prenylated indolactams.

Introduction

Teleocidin B (1) (Fig. 1), an indolactam-terpenoid hybrid
molecule, was initially isolated from Streptomyces med-
iocidicus [1–5] and reported to be a potent activator of
protein kinase C [6]. Owing to its unique structure and
remarkable biological activity, it has been extensively
studied by many chemists and biochemists. Its biosynth-
esis has also been investigated by isotope-feeding and
chemical conversion experiments, which revealed that this
molecule is synthesized from L-valine and L-tryptophan,
through the formation of indolactam V (2), and the iso-
prenoid moiety is generated by the 2-C-methyl-D-ery-
thritol 4-phosphate pathway [7–9]. However, the genes
and enzymes involved in the construction of this unique,
indole-fused cyclic terpenoid structure remained to be
elucidated. Therefore, to understand the molecular basis

for teleocidin biogenesis, we performed the genome
mining of its biosynthetic gene cluster.

Identification of biosynthetic genes

In 2004, the biosynthetic gene cluster (the ltx cluster) of
lyngbyatoxin A (3) (Fig. 2) [10], which is a putative pre-
cursor of teleocidin, was identified from the cyanobacterium
Moorea producens [11]. The ltx gene cluster encodes the
non-ribosomal peptide synthetase (NRPS) LtxA, the cyto-
chrome P450 monooxygenase LtxB, and the indole pre-
nyltransferase (PT) LtxC. This established that the
biogenesis of lyngbyatoxin A starts with the formation of
the dipeptide N-methyl-L-valine-L-tryptophanol (4) by the
NRPS LtxA, followed by the subsequent cyclization by the
P450 LtxB into the indolactam V (2) through a unique
oxidative C-N bond-forming reaction and the reverse-
fashion geranylation of the indolactam by the indole PT
LtxC (Fig. 2) [12]. However, the biosynthesis of the tele-
ocidins, with the characteristic indole-fused C11 carbocycle,
still remained to be elucidated.

Since lyngbyatoxin A is thought to be a precursor of
teleocidins, we first searched for homologs of the ltx gene
cluster in the genome sequence of Streptomyces blas-
tmyceticus NBRC 12747, which produces teleocidin B [13].
As a result, we identified one candidate gene cluster (the tle
cluster) in a 23.2 kb contig, encoding the NRPS TleA (49%
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identity with LtxA), the P450 TleB (47% identity with
LtxB), and the PT TleC (40% identity with LtxC). Unex-
pectedly, no methyltransferase (MT) or terpene cyclase
genes, which we thought would be involved in the bio-
synthesis of teleocidin, were present in the cluster. In fact,
heterologous gene expression of the tleABC cluster, in
Streptomyces lividans TK21 as the host strain, resulted in
only the production of lyngbyatoxin A (3) but not tele-
ocidins, suggesting that the additional genes encoding the
enzyme(s) for the C-methylation and terpene cyclization
reactions are located outside of the tleABC cluster [13, 14].
A sequence analysis revealed that there are nine C-
methyltransferase (C-MT) genes in the S. blastmyceticus
genome, and a reverse transcriptase–polymerase chain
reaction experiment indicated the co-transcription of six of
them with tleC. Therefore, we tested the co-expression of
each of the six C-MT genes with the tleABC genes in S.
lividans and finally identified tleD as the C-MT gene
responsible for the production of teleocidins [13]. Notably,
TleD is moderately homologous to other S-adenosyl-L-
methionine (SAM)-dependent C-MTs that mediate the C-
methyl transfer reaction to the prenyl carbons [15–17].

Finally, the co-expression of all four tleABCD genes in S.
lividans successfully resulted in the production of teleocidin
B-1 (1a), teleocidin B-4 (1d), and des-O-methyl-olivoretin
C (5) (Fig. 3) [13, 14].

Terpene cyclization initiated by methyl
transfer

It is remarkable that the co-expression of the tleD gene with
the telABC genes led to the formation of not only methy-
lated but also cyclized products. This was also confirmed by
in vitro enzyme reactions. The C-MT TleD was hetero-
logously expressed in Escherichia coli as a soluble protein,
and the purified recombinant enzyme successfully accepted
lyngbyatoxin A (3) as a substrate to efficiently produce the
three cyclized products: teleocidin B-1 (1a), teleocidin B-4
(1d), and des-O-methyl-olivoretin C (5), as in the in vivo
case [13]. This result unequivocally established that 3 is the
direct precursor of teleocidins, and TleD not only catalyzes
the C-methylation of the geranyl side chain but also pro-
duces the indole-fused cyclic terpenoid (Fig. 3). This is the
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first report of a terpene cyclization reaction initiated by the
C-methylation of the prenyl double bond: a C-methylated
carbocation thus triggers the nucleophilic attack on the same
carbon from the C-7 position of the electron-rich aromatic
ring to form the characteristic indole-fused C11 carbocycle
scaffold of teleocidins.

Interestingly, the TleD enzyme reaction with [25-2H]-3
demonstrated that the 2H atom is retained in all three pro-
ducts, 1a, 1d, and 5, and that the 2H atom at C-25 migrated
to C-26 (Fig. 3) [13]. This indicated that a 1,2-hydride shift
proceeds to generate the C-25 tertiary cationic intermediate,
and since no isotope enzyme kinetic effect was observed,
this is not the rate-determining step of the enzyme reaction.
Based on these observations, we proposed the following
mechanism of the TleD enzyme reaction (Fig. 3), which is
consistent with the previous proposal by Irie and co-
workers [7–9]. TleD first catalyzes the C-methylation of C-
25 of the terminal double bond, and a subsequent 1,2-
hydride shift produces the C-25 carbocation, which is then
converted to a spiro-fused cationic intermediate by the Re-
face nucleophilic attack from the indole ring. Finally, the
carbon rearrangement via path a yields 1d, whereas that by
path b produces 5. In contrast, the Si-face nucleophilic
attack from the indole during the formation of the spiro
intermediate (path c) leads to the production of 1a. Both the

in vitro and in vivo reactions afforded the same product
ratio (1a:1d:5= 1:5:2), indicating that path a is preferred
[13]. This is probably due to the steric effects caused by the
presence of the bulky isopropyl and vinyl substituents.
Presumably, the 1,2-hydride shift and the terpene cycliza-
tion proceed in a concerted manner, since no products
derived from the hydroxylation or deprotonation of the
C-25 carbocation were detected in the reaction mixture.
Nonetheless, it should also be noted that we cannot totally
exclude the possibility that TleD simply catalyzes the
C-methylation, while the remaining reactions do not require
much enzymatic assistance and could proceed almost
spontaneously.

The amino acid sequence of the 32 kDa SAM-dependent
C-MT TleD showed 17%, 28%, and 34% identities to those
of Streptomyces coelicolor A3(2) geranyldiphosphate 2-C-
MT [15], M. oryzae sterol 24-C-MT [16], and Lechevalieria
aerocolonigenes rebeccamycin sugar 4’-O-MT RebM [17],
respectively. However, it lacks homology to any known
terpene cyclizing enzymes. Recently, He and co-workers
reported the X-ray crystal structures of TleD in complex with
the SAM analog, S-adenosyl-L-homocysteine, in the pre-
sence and absence of lyngbyatoxin A (3) [18]. The structures
revealed that, in TleD, Tyr21 anchors a unique additional N-
terminal α-helix to the core structure of the SAM-dependent
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C-MT fold and plays an important role in the catalytic
function. Furthermore, a molecular dynamics simulation
suggested that the folding conformation of the enzyme-
bound substrate 3 facilitates the Re-face nucleophilic attack
from the C-7 carbon of the indole ring, during the formation
of the spiro-fused cationic intermediate. This is consistent
with our observed product ratio of 1a:1d:5 [18].

Prenylation of indolactam by aromatic PT

In the biosynthesis of teleocidins, lyngbyatoxin A (3) is
produced by the 42 kDa soluble indole PT, TleC. In fact,
our in vitro and in vivo experiments confirmed that TleC
accepts indolactam V (2) and GPP (C10) as substrates and
catalyzes the Friedel–Crafts alkylation at the C-7 position of
the indole ring in a reverse fashion (C-C bond formation at

the C-3 position of the prenyl chain) to produce 3 (Fig. 4)
[19]. Interestingly, TleC shares 38% identity with another
indole PT, MpnD, from the bacterium Marinactinospora
thermotolerans [20], which also selects 2 as the prenyl
acceptor to catalyze the prenylation of DMAPP (C5) in the
reverse manner to yield pendolmycin (6) (Fig. 4). The two
enzymes thus catalyze the prenylation of the same acceptor
substrate with different prenyl chain lengths. Furthermore,
the in vitro enzyme reactions revealed that, while each
enzyme prefers different prenyl donors (C10 for TleC and C5

for MpnD), both TleC and MpnD can accept prenyl donors
with chain lengths varying from C5 to C25. Interestingly,
MpnD catalyzes the prenylation of GPP in the forward
fashion at the C-5 position of the indole, to afford the
5-geranylindolactam V in addition to 3 [19].

To understand the structure–function relationships
between the two indole PTs, we successfully solved the
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X-ray crystal structures of both TleC and MpnD at 1.4–2.1
Å resolutions (Fig. 5) [19]. The apo and the complex
structures with the DMAPP analog, dimethylallyl S-thio-
pyrophosphate, and indolactam V (3) revealed that these
two enzymes share an almost identical αββα (ABBA) barrel
overall fold [21], as in the cases of other indole PTs from
bacteria and fungi. A comparison of the crystal structures
revealed slight differences in the prenyl-binding pockets
between TleC and MpnD, whereas the active site geometry
and the binding modes of the indolactam and the dipho-
sphate moiety of DMSPP are almost identical (Fig. 5) [19].
Thus the Tyr80, Trp157, and Met159 residues in the active
site of MpnD are characteristically replaced with Trp97,
Phe170, and Ala173, respectively, in TleC. As a result, the
prenyl-binding pocket of TleC is larger than that of MpnD,
which makes it suitable to accommodate the C10 GPP as the
prenyl donor. In contrast, the bulkier Met159 in MpnD,
instead of the smaller Ala173 in TleC, decreases the volume
of the prenyl-binding pocket, which explains the preferred
substrate specificity of MpnD for the C5 DMAPP, instead of
the C10 GPP. These observations suggested that the three
residues lining the active site play crucial roles for selecting
the prenyl donors and guiding the stereochemical courses of
the enzyme reactions.

To test this hypothesis, we performed a set of site-
directed mutagenesis experiments [19]. As a result, the

small-to-large A173M mutation in TleC indeed altered its
prenyl substrate preference, from the C10 GPP to the C5

DMAPP. In contrast, the MpnD M159A mutant efficiently
accepted GPP as a prenyl donor to afford lyngbyatoxin A as
the single product. Thus, by the single amino acid sub-
stitution, MpnD was functionally converted to TleC. Fur-
thermore, the TleC W97Y/A173M and TleC W97Y/
F170W/A173M mutants obtained new catalytic functions to
produce an unnatural novel C-19 epimer of lyngbyatoxin A
(7) as the major product, as well as 5-geranylindolactam V
(8) and lyngbyatoxin A (Fig. 4c).

Conclusion

In these studies, we identified genes responsible for the
teleocidin B biogenesis. Notably, the C-MT TleD is the first
enzyme that catalyze not only the C-methylation of the
prenyl side chain but also triggers terpene cyclization
reaction, which provided a new mode of enzymatic cycli-
zation of terpene molecules. Next, the crystallographic
investigation of the indole PTs provided intimate structural
basis for the TleC catalyzed unique reverse-fashioned pre-
nyl transfer reactions and identified the active site
residues that determines the chain length of the prenyl
substrate. Further, structure-based mutagenesis successfully
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controlled the substrate preference and altered the stereo-
chemical course of the enzyme reactions. These results
provide not only important insights into the detailed cata-
lytic mechanisms but also remarkable strategies toward
rational manipulation of the biosynthetic enzymes to pro-
duce structurally divergent and medicinally important
unnatural novel molecular scaffolds for drug discovery.
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