BRIEF COMMUNICATION

JARA Japan Antibiotics Research Association

A new antitrypanosomal alkaloid from the Red Sea marine sponge *Hyrtios* sp.

Nourhan Hisham Shady¹ • Mostafa A. Fouad² • Safwat Ahmed³ • Sheila Marie Pimentel-Elardo⁴ • Justin R. Nodwell⁴ • Mohamed Salah Kamel^{1,2} • Usama Ramadan Abdelmohsen²

Received: 2 June 2018 / Accepted: 4 August 2018 / Published online: 4 September 2018 © The Author(s) under exclusive licence to the Japan Antibiotics Research Association 2018

Abstract

The antitrypanosomally active crude extract of the sponge *Hyrtios* sp. was subjected to metabolomic analysis using liquid chromatography coupled with high resolution electrospray ionization mass spectrometry (LC–HR-ESIMS) for dereplication purposes. As a result, a new alkaloid, hyrtiodoline A (1), along with other four known compounds (2–5) were reported. The structures of compounds 1–5 were determined by spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESI-MS) experiments, as well as comparison to the literature. We further investigated the antitrypanosomal activity of the five compounds, where compound 1 exhibited the most potent antitrypanosomal activity, with a half-maximal inhibitory concentration (IC₅₀) value of 7.48 μ M after 72 h.

Marine sponges are a rich source of structurally novel chemical leads [1] that are interesting for drug discovery. In recent years, advances in chromatographic and spectroscopic techniques have facilitated the identification of structurally complex natural products [2] from sponges with >30% of all marine natural product discovered to date [3, 4]. Members of the genus *Hyrtios* (Demospongiae class, Dictyoceratida order, Thorectidae family) are known to produce alkaloids, sesterterpene, sesquiterpene, sterols, and macrolides [5–9], of which diverse activities are attributed such as cytotoxicity against murine P388 lymphocytic leukemia cells and various

Electronic supplementary material The online version of this article (https://doi.org/10.1038/s41429-018-0092-5) contains supplementary material, which is available to authorized users.

Usama Ramadan Abdelmohsen usama.ramadan@mu.edu.eg

- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, P. O. Box 61111, Minia, Egypt
- ² Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- ³ Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- ⁴ Department of Biochemistry, University of Toronto, MaRS Centre West, 661 University Avenue, Toronto, ON M5G 1M1, Canada

human tumor cell lines, antimalarial, antifungal, and antitrypanosomal activities [10, 11].

Dereplication of the secondary metabolites [12] from the antitrypanosomally active (90% growth inhibition) crude extract marine sponge *Hyrtios* sp. was achieved by high resolution Fourier transform mass spectrometry. Compounds identified and dereplicated from high-resolution mass spectral data sets of the marine sponge *Hyrtios* sp. by utilizing macros and algorithms that coupled MZmine with both in-house and commercial database MarinLit. The dereplicated compounds were showed in Fig. 1a, The crude extract of the Red Sea sponge *Hyrtios* sp. was then subjected to vacuum-liquid chromatography, followed by chromatography on silica gel and Sephadex LH-20, and finally, purification on semi-preparative high-pressure liquid chromatography (HPLC) to afford compounds **1–5** (Fig. 1b).

Compound 1 (2.5 mg) was isolated as a white powder. The molecular formula was determined to be $C_{12}H_{15}N_3O_2Na$, from its high-resolution electrospray ionization mass spectrometry, m/z calcd. 256.1064 for $C_{12}H_{15}N_3O_2Na$ (HRESI-MS). The ¹H-NMR spectrum (Table 1) revealed the presence of four proton resonances for the aromatic ABCD system, at δ_H 6.95 (1H, td, J = 7.0, 1.0 Hz; H-5), δ_H 7.03 (1H,td, J = 8.1, 1.1 Hz; H-6), δ_H 7.37 (1H, br d, J = 7.2 Hz; H-4), δ_H 7.45 (1H, br d, J = 8.0 Hz; H-7). In addition to two methylene protons at δ_H 2.82 (1H, dt, J = 4.8, 15.6; H-8a), δ_H 2.92 (1H, dt, J = 6.6, 15.6; H-

Fijianolide E

a Compounds identified and dereplicated from high resolution mass spectral data sets of the Hyrtios sp.

c Significant HMBC and COSY correlations of compound 1

Fig. 1 a Compounds identified and dereplicated from high-resolution mass spectral data sets of the Hyrtios sp. b Structures of the isolated compounds 1-5. c Significant HMBC and COSY correlations of compound 1

8b), $\delta_{\rm H}$ 3.27 (1H, m, H-9a), and $\delta_{\rm H}$ 3.42 (1H, m; H-9b) overlapped with the water peak, in addition to a downfield broad singlet proton at δ_{H} 4.68 (1H, br s; H-10). Finally, a singlet peak at $\delta_{\rm H}$ 10.68 (1H, s; NH-1) was inspected. On

C/H no.	$\delta_{\rm H}$, Mult	COSY	$\delta_{\rm C}$, Mult	HMBC $(J = 8.3$ Hz)
1		_	_	_
2	_	_	125.8	_
3	_	_	104.2	_
3a	_	_	128.6	_
4	7.37 (1H, brd, $J = 7.2$)	6.95	117.9	121.4, 136.0
5	6.95 (1H, td, <i>J</i> = 7.0, 1.0)	7.37, 7.03	118.9	112.2, 128.6
6	7.03 (1H, td, $J = 8.1, 1.1$)	6.95, 7.45	121.4	121.4, 136.0
7	7.45 (1H, brd, $J = 8.0$)	7.03	112.2	118.9, 128.6
7a	_	_	136.0	_
8a	2.82 (1H, dt, <i>J</i> = 4.8, 15.6)	_		128.6
8b	2.92 (1H, dt, <i>J</i> = 6.6, 15.6)	_	18.1	128.6
9a	3.27 (1H, m)	_		
9b	3.42 (1H, m)	_	41.2	104.2, 165.5
		4.68		
10	4.68 (1H, brs)	_	55.3	_
11	_	_	165.5	_
NH	10.68 (1H, s)	_		120.5, 149.3

Table 1 NMR-spectroscopic data of compound 1 in DMSO- d_6 (¹H:600 MHz; ¹³C: 150 MHz)

s singlet, brs broad singlet, d doublet, brd broad doublet, t triplet

the other hand, the ¹³C NMR, DEPT spectra revealed the presence of 12 signals classified into five methine carbon signals at δ_C 117.9 (CH-4), δ_C 118.9 (CH-5), δ_C 121.4 (CH-6), $\delta_{\rm C}$ 112.2 (CH-7), and $\delta_{\rm C}$ 55.3 (CH-10); and five quaternary carbon signals at δ_C 125.8 (C-2), δ_C 104.2 (C-3), δ_C 128.6 (C-3a), δ_C 136.0 (C-7a), and δ_C 165.5 (C-11), in addition to two methylene carbons at $\delta_{\rm C}$ 18.1 (CH₂-8) and $\delta_{\rm C}$ 41.2 (CH₂-9). Investigation of the heteronuclear multiple bond correlation (HMBC) spectrum showed strong correlations between the δ_H 10.68 assignable to NH-1 and δ_C 104.2 (C-3); δ_{C} 128.6 (C-3a) confirmed the position of NH-1; and finally, the significant correlations between $\delta_{\rm H}$ 2.82 for H-8a with δ_C 128.6 (C-3a), and between δ_H 2.92 corresponding to H-8b with $\delta_{\rm C}$ 128.6 (C-3a),125.8 (C-2), confirmed the position of the aliphatic side chain at C-3. The HMBC spectrum showed the correlation between H-10 $(\delta_{\rm H} 4.68)$ and the carboxylic carbon (C-11). The complete assignment of compound 1 was confirmed by investigation of heteronuclear single quantum coherence (HSQC), correlation spectroscopy (COSY), and HMBC as showed in Fig. 1c (Table 1). From the previous data, compound 1 (2amino-4 (2-amino-1H-indole-3-yl) butanoic acid) was confirmed to be a new alkaloid, which we named Hyrtiodoline A.

Compounds 2–5 were identified based on HSQC, HMBC, COSY spectra, HRESI-MS and in comparison with the literature [9, 13–16] as 4-hydroxy-1*H*-indole-6-carboxylic acid methyl ester, synthetic known dimer of indole-3-carbaldehyde, 3-methylene hydroxy β -carboline alkaloid and 2,3-dibromo-4-hydroxybenzaldehyde, respectively. The five compounds were tested against *Trypanosoma brucei brucei*, and for cytotoxicity against J774.1 macrophages. Antitrypanosomal activity after 48 and 72 h was detected for compound **1** with IC₅₀ values of 15.26 and 7.48 μ M, respectively, with no cytotoxicity against J774.1 macrophages (IC₅₀ of >200 μ M). However, the other compounds showed no activity against *T. brucei*.

Material and methods

General experimental procedures

¹H, ¹³C, COSY, HSOC, and HMBC NMR spectra were recorded on a Bruker Avance III HD 600 (Bruker Daltonics, Bremen, Germany) instrument. Accurate electrospray ionization mass spectra (ESI) were obtained by a micrOTOF focus (Bruker Daltonics, Bremen, Germany. TLC was performed on TLC plates precoated with silica gel F254 (Merck, Darmstadt, Germany). HPLC separation and purification were performed on a Agilent Technologies Series 1100 (ALS, UV Detect00719, USA) on a semi-preparative RP-C18 column (5 μ m, 10 \times 250 mm, Waters XBridge, city, Germany). MR 700 Microplate Reader (optical density measurement) (Dynatech Engineering Ltd., Willenhall, UK). The NMR spectral data of compound 1 were acquired using a 600 MHz instrument: ¹H, ¹³C, ¹³C-DEPT135, ¹H-¹H COSY, HSQC, and HMBC (optimized to J = 8.3 Hz) in DMSO- d_6 (Table 1).

Sponge material

The sponge material used in this work was collected by Safwat Ahmed (Suez Canal University) from the Egyptian coasts of the Red Sea at Sharm el-Sheikh, using scuba diving at a depth of 9.14 m. The collected material was immediately frozen and kept at -20 °C until investigation. The sponge biomass was identified by van Soest (Institute of Systematic Population Biology, Amsterdam University, The Netherlands). A voucher specimen was kept in the collections of the Zoological Museum of the University of Amsterdam, under registration number ZMAPOR19762. Another voucher sample was deposited under the number SAA-61 at the Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University, Egypt.

Extraction and isolation

The freeze-dried sponge was extracted exhaustively with methanol-methylene chloride 1:1. The resulting crude extract was first partitioned between H₂O and EtOAc, followed by evaporation of the EtoAc layer and repartitioning of the aqueous fraction with butanol. The EtOAc-soluble material of Hyrtios (6 g) was subjected to vacuum-liquid ochrmatography on silica gel, using gradient elution with Pet-Ether:EtoAc then EtoAc 100% followed by methanol. The methanol fraction was subjected to silica gel column chromatography and eluted with a dichloromethane methanol (DCM-MeOH) gradient elution, followed by sephadex LH-20 (Merck, Bremen, Germany), and finally purified on semi-preparative HPLC using an acetonitrile (MeCN) and water solvent mixture complemented by 0.05% trifluoroacetic acid (10% MeCN/H2O to 100% MeCN over 30 min at a flow rate of 5 mL/min), to yield compound 3 (Rt = 17.877 min) and compound 5 (Rt =16.8 min); while the butanol fraction was subjected to sephadex LH-20 CC using a MeOH-H₂O gradient elution (10:100%), followed by final purification on semipreparative HPLC using an acetonitrile (MeCN) and water solvent mixture complemented by 0.05% trifluoroacetic acid (10% MeCN/H2O to 100% MeCN over 30 min at a flow rate of 5 mL/min), to afford the three compounds 1 (Rt = 18.1 min), 2 (Rt = 16.4 min), and 4 (Rt = 17.1 min).

Antitrypanosomal assay

Antitrypanosomal activity [17, 18] was tested, following the protocol of Huber and Koella [19, 20].

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

- 1. Altmann K-H. Drugs from the oceans: marine natural products as leads for drug discovery. Chimia. 2017;71:646–52.
- Ancheeva E, El-Neketi M, Song W, Lin W, Daletos G, Ebrahim W, Proksch P. Structurally unprecedented metabolites from marine sponges. Curr Org Chem. 2017;21:426–49.
- Bhushan A, Peters EE, Piel J. Entotheonella bacteria as source of sponge-derived natural products: opportunities for biotechnological production. In: Blue Biotech. Cham (ZG) Switzerland: Springer; 2017. pp. 291–314.
- Laport M, Santos O, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol. 2009;10:86–105.

- Kobayashi JI, Murayama T, Ishibashi M, Kosuge S, Takamatsu M, Ohizumi Y, Kobayashi H, Ohta T, Nozoe S, Takuma S. Hyrtiosins A and B, new indole alkaloids from the Okinawan marine sponge *Hyrtios erecta*. Tetrahedron. 1990;46:7699–702.
- Longeon A, Copp BR, Quevrain E, Roue M, Kientz B, Cresteil T, Petek S, Debitus C, Bourguet-Kondracki ML. Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and *Hyrtios* sp. Mar Drugs. 2011; 9:879–88.
- Tanaka N, Momose R, Takahashi Y, Kubota T, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi JI. Hyrtimomines D and E, bisindole alkaloids from a marine sponge *Hyrtios* sp. Tetrahedron Lett. 2013;54:4038–40.
- Ashour MA, Elkhayat ES, Ebel R, Edrada R, Proksch P. Indole alkaloid from the Red Sea sponge *Hyrtios erectus*. ARKIVOC. 2007;15:225–31.
- Pettit GR, Tan R, Cichacz ZA. Antineoplastic agents. 542. Isolation and structure of sesterstatin 6 from the Indian Ocean sponge *Hyrtios erecta*. J Nat Prod. 2005;68:1253–5.
- Kirsch G, König GM, Wright AD, Kaminsky R. A new bioactive sesterterpene and antiplasmodial alkaloids from the marine sponge *Hyrtios* cf. *erecta*. J Nat Prod. 2000;63:825–9.
- Herrera Acevedo C, Scotti L, Feitosa Alves M, Formiga Melo Diniz MDF, Scotti MT. Computer-aided drug design using sesquiterpene lactones as sources of new structures with potential activity against infectious neglected diseases. Molecules. 2017;22:79.
- Macintyre L, et al. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs. 2014;12 (6):3416–48.
- Krespan B, Springfield SA, Haas H, Geller HM. Electrophysiological studies on benzodiazepine antagonists. Brain Res. 1984;295:265–74.
- Lin G, Wang Y, Zhou Q, Tang W, Wang J, Lu T. A facile synthesis of 1-substituted β-carboline derivatives via miniscireaction. Synth Commun. 2011;41:3541–50.
- Hodgson HH, Jenkinson TA. CCXCVI.—Nitration of 4-halogeno-2-hydroxy-and 2-halogeno-4-hydroxy-benzaldehydes. J Chem Soc. 1928;0:2272–80.
- Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE. 2015;10: e0138528.
- Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE. 2015;10: e0138528.
- Huber W, Koella JC. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993;55:257–61.
- Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn RJ, Hentschel U, Edrada-Ebel R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-*Actinokineospora* sp. EG49. Mar Drugs. 2014;12:1220–44.
- Shady NH, El-Hossary EM, Fouad MA, Gulder TA, Kamel MS, Abdelmohsen UR. Bioactive natural products of marine sponges from the genus *Hyrtios*. Molecules. 2017;22:781.