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Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze
ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent
coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl
sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as
potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide
range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine
structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.

Introduction

Adenylate-forming enzymes are a mechanistic super-
family of structurally diverse enzymes that are found
across all three domains of life and play critical roles in a
wide range of biological processes, including protein
synthesis [1, 2] and posttranslational modifications [3–6],
nucleoside/nucleotide [7–9], amino acid [10, 11] and
fatty acid metabolism [12–14], and natural product
biosynthesis [15–24]. Accordingly, members of this
superfamily are attractive targets for the development
of biological probes and novel therapeutics in areas

including infectious diseases [2, 6, 7, 17, 24–28], cancer
[5, 10, 11], and neurodegenerative, metabolic, and auto-
immune disorders [2].

Adenylate-forming enzymes generally catalyze a two-
step reaction, first established by Berg in 1955 [29, 30].
The mechanism involves initial condensation of a car-
boxylic acid substrate with adenosine-5′-triphosphate
(ATP) to form a reactive, tightly bound acyl adenylate
(acyl-AMP) intermediate, followed by attack of a
nucleophile on this mixed anhydride intermediate to form
an ester, thioester, or amide product. Strikingly, at least
nine different classes of enzymes comprising eight dif-
ferent protein folds are known to catalyze adenylation
reactions, using distinct active-site residues and substrate-
binding conformations.

Leveraging this mechanistic and structural information,
work from a number of research groups has demonstrated
that potent, selective inhibitors of adenylate-forming
enzymes can be developed using acyl sulfonyladeno-
sines (acyl-AMS), which mimic the tightly bound acyl-
AMP reaction intermediate. Importantly, rational design
of selective inhibitors can be achieved based on the
structure of the carboxylic acid substrate, the binding
orientation and active-site interactions of the tightly
bound acyl-AMP intermediate, and the nature of the
incoming nucleophile. Herein, we provide an overview of
the adenylate-forming enzyme superfamily and the use of
this general acyl-AMS platform to develop selective
inhibitors of these enzymes.
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The adenylate-forming enzyme mechanistic
superfamily

Overview

Adenylate-forming enzymes catalyze a wide range of
coupling reactions between carboxylic acids and various
nucleophiles, using both small molecule and protein
substrates for each component [31]. In the first half-
reaction, ATP is used to activate the carboxylic acid
substrate (1.1), releasing pyrophosphate and forming a
reactive acyl-AMP intermediate (1.2) (Fig. 1). Impor-
tantly, in the context of inhibitor design, this acyl-AMP
intermediate generally remains tightly bound to the
enzyme before catalysis of the second half-reaction. The
acyl-AMP intermediate (1.2) then reacts with a nucleo-
phile to form an ester, thioester, or amide product (1.3)
with loss of AMP as the leaving group. In some cases,
the second half-reaction is accompanied by a con-
formational change in the adenylate-forming enzyme to
introduce new catalytic residues into the active site.
Notably, there are a few biosynthetic pathways in which
these two half-reactions are catalyzed by two separate
enzymes [7, 32], although transfer of the acyl-AMP
intermediate between the two enzymes must be rapid to
avoid spontaneous hydrolysis or reactions with other
nucleophiles [33, 34].

In a striking example of parallel evolution, at least nine
distinct protein classes comprising eight different structural
folds are known to catalyze adenylation reactions: Class I
aminoacyl-tRNA synthetases [1], Class II aminoacyl-tRNA
synthetases [1], the ANL (acyl-CoA synthetase, non-
ribosomal peptide synthetase (NRPS), luciferase) family
[35], ubiquitin-family E1 activating enzymes [4, 36], biotin
protein ligases (which share the same fold as Class II
aminoacyl-tRNA synthetases but use a distinct active-site
architecture) [37, 38], N-type ATP pyrophosphatases,
YrdC-like carbamoyltransferases [9], NRPS-independent

siderophore synthetases [24], and the recently described
BioW acyl-CoA synthetases [39, 40] (Fig. 2 and Table 1).
Remarkably, although each class of enzymes has distinct
structural features, they all catalyze the same general bio-
chemical transformation.

Class I aminoacyl-tRNA synthetases

Aminoacyl-tRNA synthetases catalyze the activation of an
amino acid (3.1) to form an aminoacyl-AMP intermediate
(3.2), which then reacts with a ribose hydroxyl nucleophile
at the 3′-end of the appropriate tRNA to form an aminoacyl-
tRNA ester product (3.3) [26] (Fig. 3a). Two different
classes of aminoacyl-tRNAs have been identified with dis-
tinct protein folds in the catalytic core [1, 41] (SCOPe
c.26.1.1 and d.104.1.1) [42, 43], whereas various flanking
domains are used to recognize the corresponding tRNA.
Class I aminoacyl-tRNA synthetases have a nucleotide-
binding Rossmann fold (Fig. 2a) and typically catalyze
acylation of the 2′-hydroxyl of the tRNA 3′-ribose [1, 44,
45]. Of note in the context of inhibitor design, these
enzymes bind the aminoacyl-AMP intermediate in an
extended conformation. Interestingly, some of these
enzymes have proofreading mechanisms that hydrolyze
non-cognate aminoacyl-AMP intermediates and mis-
acylated aminoacyl-tRNA products to prevent incorrect
amino acid incorporation [46]. Further, bacterial pantothe-
nate synthetase (PanC) [47, 48], which catalyzes coupling
of pantoate to the amino group of β-alanine to form pan-
tothenate (3.4), and mycobacterial cysteine ligase (MshC)
[49], which catalyzes coupling of cysteine to the amino
group of GlcN-Ins (1-D-myo-inosityl-2-amino-2-deoxy-α-D-
glucopyranoside) in the biosynthesis of mycothiol (3.5), are
structurally related to class I aminoacyl-tRNA synthetases
(Fig. 3b).

Class II aminoacyl-tRNA synthetases

Class II aminoacyl-tRNA synthetases (SCOPe d.104.1.1)
also catalyze activation of an amino acid to form an
aminoacyl-AMP intermediate that is coupled with the cor-
responding tRNA 3′-ribose, but typically via the 3′-hydro-
xyl (4.1) [1] (Fig. 4a). The conserved catalytic core consists
of a series of antiparallel β-sheets (Fig. 2b). In contrast to
class I aminoacyl-tRNA synthetases, the aminoacyl-AMP
intermediate is bound in a slightly bent conformation. Some
class II enzymes also have proofreading mechanisms to
prevent incorrect amino acid incorporation [46]. Prokaryotic
asparagine synthetase A (AS-A) is structurally related to
class II aminoacyl-tRNA synthetases and catalyzes activa-
tion of the aspartate side-chain carboxylate (4.3) and con-
densation with ammonia to form asparagine (4.4) [50]
(Fig. 4b).
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Fig. 1 General mechanism for two half-reactions catalyzed by
adenylate-forming enzymes. A carboxylic acid substrate (1.1) (blue)
attacks ATP at the α-phosphate (orange) to form a reactive acyl-AMP
(acyl adenylate) intermediate (1.2), which then reacts with a nucleo-
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adenosine-5′-O-monophosphate, ATP adenosine-5′-O-triphosphate
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ANL family enzymes

The ANL family (SCOPe e.23.1.1) [35] is comprised of
acyl-CoA synthetases [51–53], NRPS adenylation domains
[54, 55], and firefly luciferase [56, 57]. These enzymes
catalyze adenylation of a variety of small-molecule car-
boxylic acids (5.1) to form acyl-AMP intermediates (5.2)

(Fig. 5a). In the first two classes, this is followed by con-
densation with the thiol nucleophile of coenzyme A (5.3) or
the analogous phosphopantetheine prosthetic group of
a peptidyl or acyl carrier protein (ACP; thiolation)
domain, respectively (5.4). The enzymes consist of a large
N-terminal domain and a smaller C-terminal domain,
which enclose the active site (Fig. 2c). Notably, the second
half-reaction is characterized by a ≈140° rotation of
the C-terminal domain, resulting in active-site remodeling
[35]. Acyl-CoA synthetases are involved in metabolism of
acetate as well as a wide range of fatty acid and other
carboxylic acid substrates [12]. In contrast, NRPS adeny-
lation domains activate amino acids and other carboxylic
acid substrates during the biosynthesis of a wide range of
bacterial natural products [15, 16]. In the third
class, luciferase activates firefly D-luciferin (5.5) to form a
D-luciferyl-AMP intermediate (5.6), which then reacts
directly with molecular oxygen via the corresponding
enolate to form an α-peroxide (5.7), which cyclizes to
generate a four-membered α-peroxylactone intermediate
(5.8) (Fig. 5b). Fragmentation of this intermediate leads to
formation of oxyluciferin in an excited state (5.9), relaxa-
tion of which emits light [58]. Interestingly, luciferase
can also activate the enantiomeric L-luciferin to form
L-luciferyl-AMP, which condenses with CoA to form
L-luciferyl-CoA, an inhibitor of the bioluminescence reac-
tion. The luciferase acyl-CoA synthetase activity addition-
ally has been suggested to have a role in conversion of
natural L-cysteine-derived L-luciferin to the requisite
D-luciferin substrate [58]. Recently, the OleC class of
β-lactone synthetases, which catalyze cyclization of
β-hydroxyacid substrates, was reported to fall in the ANL
family based on sequence homology [23, 59]. Notably, a
pair of enzymes, PtmA1 and PtmA2, which share the ANL
family structure but appear to catalyze the adenylation and
nucleophilic addition half-reactions separately, have been

Fig. 2 Structures of the nine classes of adenylate-forming enzymes.
Top of a–h: Overall protein fold with acyl-AMP intermediate or mimic
(spheres) bound. Bottom of a–h: Active site with acyl-AMP inter-
mediate or mimic (ball-and-stick) bound; protein side chains within 4
Å of the ligand are shown (sticks); portions of structures that obscure
the ligands are not shown. PDB ID codes are shown in parentheses.
a Class I aminoacyl-tRNA synthetase Bacillus stearothermophilus
tyrosyl-tRNA synthetase catalytic N-terminal domain with carbonyl-
reduced intermediate mimic Tyr-CH2-AMP (tyrosinyl-AMP) (PDB
ID: 3TS1) [44]. b Class II aminoacyl-tRNA synthetase Thermus
thermophilus seryl-tRNA synthetase with adenylate mimic Ser-AMS
(seryl-AMS) (PDB ID: 1SET) [134]. c ANL family enzyme B. subtilis
DhbE with adenylate intermediate DHB-AMP (2,3-dihydroxybenzoyl-
AMP) (PDB ID: 1MDB) [55]. d SUMO (small ubiquitin-like modifier)
E1 activating enzyme human (Sae1/Uba2) with adenylate mimic
SUMO-AMSN (SUMO1[T95C]-AMSN) (PDB ID: 3KYC) [60].
e Biotin protein ligase Escherichia coli BirA homodimer with
carbonyl-reduced intermediate mimic Bio-CH2-AMP (biotinol-O-
AMP) (PDB ID: 2EWN) [66]. f N-type ATP pyrophosphatase B.
subtilis NAD+ synthetase homodimer with adenylate intermediate
NAD-AMP (PDB ID: 2NSY) [68]. g YrdC-like carbamoyltransferase
Sulfolobus tokodaii Sua5 with adenylate intermediate TC-AMP
(threon-2-N-ylcarbamoyl-AMP) (PDB ID: 4E1B) [79, 80]. h NRPS-
independent siderophore synthetase Petrobacterium chrysanthemi
AcsD with substrate citrate and ATP fragments Ado (adenosine) and
SO4 (sulfate) (PDB ID: 2W03) [91]. i BioW pimeloyl-CoA synthetase
with adenylate intermediate pimeloyl-AMP (PDB ID: 5FLL) [40].
Abbreviations: AMP adenosine-5′-O-monophosphate, AMS adeon-
sine-5′-O-monosulfamate, AMSN 5′-(aminodeoxy)adenosine-5′-N-
monosulfamide, ANL acyl-CoA synthetase/NRPS adenylation
domain/luciferase, ATP adenosine-5′-O-triphosphate, CoA coenzyme
A, NAD nicotinamide adenine dinucleotide, NRPS non-ribosomal
peptide synthetase, tRNA transfer ribonucleic acid

Table 1 Substrates of the nine
classes of adenylate-forming
enzymes

Enzyme class Canonical acid Canonical nucleophile(s)

Class I aminoacyl-tRNA synthetase Amino acid tRNA 3′-ribose (2′-OH)
Class II aminoacyl-tRNA synthetase Amino acid tRNA 3′-ribose (3′-OH)
ANL family Acid CoA-SH, CP-SH, luciferin-α-OOH
E1 activating enzyme Ubl C terminus E1-Cys-SH

Biotin protein ligase Biotin BCCP-Lys-NH2

N-type ATP pyrophosphatase Acid NH3

Yrd-like carbamoyltransferase N-carboxy-Thr tRNA-A37-6-NH2

NRPS-independent siderophore synthetase Citric acid R-NH2, R-OH

BioW acyl-CoA synthetase Pimelate CoA-SH

ANL acyl-CoA synthetase/NRPS adenylation domain/luciferase, ATP adenosine-5′-O-triphosphate, BCCP
biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase, CoA coenzyme A, CP peptidyl/acyl
carrier protein, E1 E1 activating enzyme, NAD nicotinamide adenine dinucleotide, NRPS non-ribosomal
peptide synthetase, Thr threonine, tRNA transfer ribonucleic acid, Ubl ubiquitin-like modifier protein.
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reported recently in the biosynthesis of platensimycin and
platencin [32].

Ubiquitin-family E1 activating enzymes

E1 activating enzymes (SCOPe c.111.1.2) catalyze the first
steps in the ubiquitin (Ub)/Ub-like modifier (Ubl) con-
jugation cascade [3–5, 36]. This involves initial adenylation
of the C terminus of the Ub/Ubl (6.1), to form a Ub/Ubl-
AMP intermediate (6.2), followed by condensation with the
thiol nucleophile of a catalytic cysteine residue on the E1
enzyme itself to form a Ub/Ubl-E1 thioester product
(6.3) (Fig. 6). This thioester intermediate then undergoes
transthioesterification to the catalytic cysteine of an
E2-conjugating enzyme. Terminal coupling of the Ub/Ubl
to an amine nucleophile, typically a lysine side chain of a
target protein, is then catalyzed by an E3 ligase, via another
cysteine thioester intermediate in the case of HECT- and
RBR-type E3s. Most notably, E1 activating enzymes
use protein substrates for both the carboxylic acid and
nucleophile components. E1 activating enzymes have a
canyon-shaped active site with the base formed by two

pseudosymmetric adenylation domains (one of which is
inactive and in some cases a separate heterodimeric subunit)
and the walls formed by a cysteine-containing domain and a
ubiquitin-fold domain (Fig. 2d). The Ub/Ubl substrate binds
at one end of the canyon and extends its C terminus across
to the ATP-binding site at the other end. Notably, the sec-
ond half-reaction requires a ≈130° rotation of the cysteine-
containing domain coupled with remodeling of nearly half
the residues in the active site [60]. Ub/Ubls are ubiquitous
in eukaryotes, with polyubiquitination typically signaling
for protein degradation, whereas monomeric acylation with
Ub/Ubls serves as a more general posttranslational mod-
ification that impacts the function of the target protein.

Interestingly, although E1 activating enzymes are limited
to eukaryotes, structurally related enzymes have been
reported in bacteria. These enzymes lack the catalytic
cysteine-containing domain used in the second half-reaction
by E1 enzymes and instead use external nucleophiles.
Examples include the Escherichia coli molybdenum
cofactor biosynthetic enzyme MoeB, which catalyzes cou-
pling of the C terminus of MoaD to a persulfide nucleophile
[61], and the thiamin biosynthetic enzyme ThiF, which
catalyzes coupling of the C terminus of ThiS to a similar
persulfide nucleophile [62, 63]. Another related E. coli
enzyme, MccB, activates the C-terminal asparagine of a
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peptide substrate MccA (7.1), leading to intramolecular
attack of the amide side chain to form a succinimide
intermediate (7.3) en route to the Trojan horse antibiotic
microcin C7 (7.6) [64] (Fig. 7). After transporter-mediated
uptake into target cells, the N-terminal peptide is proteo-
lyzed to reveal an aspartyl-adenylate-mimetic phosphor-
amidate (7.7), which inhibits aspartyl-tRNA synthetase.

Intriguingly, Severinov and colleagues [65] recently dis-
covered a Bacillus amyloliquefaciens homolog of MccB
that instead catalyzes cytidylation of the C terminus of an
MccA-like peptide.

Biotin protein ligases

Biotin protein ligases (SCOPe b.34.1.1) activate biotin (8.1)
to form a biotinyl-AMP intermediate (8.2), then couple it
onto a lysine side chain of the biotin carboxylate carrier
protein subunit of acetyl-CoA carboxylase (8.3) [6] (Fig. 8).
A biotin carboxylase subunit then carboxylates this biotinyl
group and the carboxyl group is subsequently transferred to
acetyl-CoA by a carboxyltransferase subunit to form mal-
onyl-CoA, the key precursor in fatty acid biosynthesis. The
protein fold comprises five α-helix motifs and a mixed
seven-stranded β-sheet [37, 66] (Fig. 2e). Interestingly, this
fold is similar in overall structure to Class II aminoacyl-
tRNA synthetases [38]. However, the binding mode of the
acyl-AMP intermediate and the active-site residues are
distinct (Fig. 2b), suggesting that these two classes may
have diverged evolutionarily from a remote common pro-
genitor or evolved convergently around this stable protein
fold. In the case of the best characterized family member,
BirA, the reaction intermediate biotinyl-AMP also functions
as a co-repressor in transcription, allosterically activating
dimerization of BirA, leading to binding to and repression
of the biotin biosynthetic operon (bioO). Notably, fusion
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proteins of a BirA mutant that releases biotinyl-AMP pre-
maturely have been used for proximity tagging of proteins
in cells [33, 34].

N-type ATP pyrophosphatases

N-type ATP pyrophosphatases (SCOPe c.26.2.1) are a
versatile family of enzymes involved in amino acid and
nucleic acid metabolism [67–69]. The catalytic core consists
of a five-strand parallel β-sheet flanked by α-helices, which
catalyzes substrate adenylation and coupling to ammonia
(Fig. 2f). The ammonia nucleophile is often supplied by
hydrolysis of the side-chain amide of a glutamine co-
substrate in a glutamine amidotransferase domain of the
same enzyme or by a separate subunit. In canonical
examples, the substrate is a carboxylic acid, as in the case of

asparagine synthetase B (AS-B) [70] and NAD+ synthetase
[68, 71] (Fig. 9a). However, a wide range of mechanistic
variants are known to use other substrates, including
the following: guanosine-5′-O-monophosphate (GMP)
synthetase [67], which activates the C2-carbonyl oxygen of
xanthosine 5′-monophosphate to form an O-adenylyl iso-
urea (9.5), followed by substitution with ammonia to form
GMP (9.6) (Fig. 9b); arginosuccinate synthetase [72, 73],
which activates the side-chain amide of citrulline via its
carbonyl oxygen and couples it to the α-amino group of
aspartate during arginine biosynthesis; β-lactam synthetases
[74–76], which catalyze an intramolecular amidation to
form the characteristic β-lactam ring in these natural product
antibiotics; and LarE [77], a sulfur insertase that couples a
carboxylic acid substrate to a cysteine side chain during
biosynthesis of a Lactobacillus cofactor.

YrdC-like carbamoyltransferases

YrdC-like carbamoyltransferases (SCOPe d.115.1.1) catalyze
carbamoylation of a variety of substrates including nucleic
acids, proteins, and small-molecule natural products [9].
The protein fold consists of a 7- to 11-strand mixed β-sheet
with a distinctive ≈180° counterclockwise twist, surrounded
by intervenening α-helical regions (Fig. 2g) [78–81].
These enzymes catalyze formation of carbamoyl-AMP
intermediates, in contrast to the distinct transcarbamoylase
(transcarbamylase) family, which uses carbamoylphosphate
as an acyl donor [82]. Notably, condensation of the
carbamoyl-AMP intermediate with a nucleophile in the sec-
ond half-reaction is catalyzed by a separate Kae1-like domain
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or protein, with the adenylate intermediate thought to be
shuttled between the two active sites. The most widely studied
members of this family are involved in the biosynthesis of 6-
N-(threon-2-N-ylcarbamoyl)adenosine (t6A), a tRNA mod-
ification found adjacent to anticodon sequences that recognize
5′-ANN-3′ codons and nearly universally conserved across all

three domains of life [9]. Carbamoyltransferases in the Yrd/
Sua5 family (renamed TsaC/Tcs1 in bacteria and TsaC2/Tcs2
in eukarya and archaea) initially condense the amino
group of threonine (10.1) with CO2 or HCO3

– to form
N-carboxythreonine (10.2), which is then adenylated to form
threon-2-N-ylcarbamoyl-AMP (10.3) [83] (Fig. 10a). A sec-
ond enzyme in the Kae1/YgjD/Qri7 family (renamed Tcs3/
TsaD/Tcs4, respectively), operating as part of a larger protein
complex, then transfers the acyl group to the 6-amino group
of tRNA adenosine-37 to form the t6A product (10.4).

Another member of this family is the microbial [NiFe]-
hydrogenase maturation protein HypF, which contains both
YrdC-like and Kae1-like domains, as well as N-terminal
acylphosphatase and Zn-finger domains [81, 84, 85].
Interestingly, this enzyme uses carbamoylphosphate (10.5)
as the initial substrate, with several active sites linked by a
long tunnel, allowing hydrolysis by the acylphosphatase
domain to form carbamic acid (10.6), adenylation by the
YrdC-like domain to form carbamoyl-AMP (10.7), and acyl
transfer by the Kae1-like domain to the C-terminal Cys-
351 side chain of a carbamoyl dehydratase HypE to form a
thiocarbamate (10.8) (Fig. 10b). Subsequent HypE-cata-
lyzed, ATP-dependent dehydration affords a thiocyanate
intermediate (10.9), with the cyanide group ultimately
transferred to an Fe center in the [NiFe]-hydrogenase
(10.10) by downstream HypC and HypD enzymes. Related
enzymes in the CmcH/NodU family catalyze O-carbamoy-
lation of small-molecule natural products, including
cephamycin (CmcH), rhizobial nodulation factors (NodU),
novobiocin (NovN), and tobramycin (TobZ) (Fig. 10c) [80].
Notably, the order of the YrdC-like and Kae1-like domains
is reversed in TobZ compared with HypF.

NRPS-independent siderophore synthetases

Siderophores are iron-chelating natural products that are
used by pathogenic bacteria to acquire iron from their hosts
[28, 86, 87]. Most are produced by hybrid NRPS-polyketide
biosynthetic pathways [88]. However, some siderophores
have been found to be produced by distinct pathways
involving NRPS-independent siderophore synthetases
[24, 89, 90]. The enzyme family was initially discovered in
studies of the biosynthesis of aerobactin and typically cat-
alyzes adenylation of diacid substrates or their derivatives,
followed by coupling to amine or alcohol nucleophiles.
These enzymes can carry out desymmetrization and mac-
rocyclization reactions. Structural studies of AcsD, which
catalyzes enantioselective adenylation of citrate (11.2) in
the biosynthesis of achromobactin (11.4), revealed a
novel protein fold [91, 92] (Fig. 11). The overall structure
comprised three domains resembling a thumb, palm, and
fingers that surround the active site (Fig. 2g). Additional
NRPS-independent siderophore synthetases have been

O
P

NH2

O O
O

N

N

N

OHHO

O
P

O O

O
O

HO OH

O

O

O
O

HO OH

O

O
P

O

O O
O

HO OH

N

N

N

NH2

O
P

O

O O
O

HO OH

N

N
H

NH

O

O

O
P

O

O O
O

HO OH

N

N

N

NH2

O
P

O

O O
O

HO OH

N

N

NH

O

O
P

O

O O
O

HO OH

N

N

NH

O

NH2

ATP PPi

a)

b)

AMPNH3

NH3

NH2

9.1, NaAD (nicotinic acid adenine dinucleotide)

NN

O
P

NH2

O O
O

N

N

N

OHHO

O
P

O O

O
O

HO OH

O

9.3, NAD+ (nicotinamide adenine dinucleotide)

NN

9.2, NaAD-AMP

Gln

Glu

9.4, XMP (xanthosine-
5´-O -monophosphate)

9.6, GMP (guanosine-
5´-O -monophosphate)

9.5, XMP-2-AMP

ATP

PPi

AMP

N N

N N

2

Gln
Glu

ADP N

N

Fig. 9 Biochemistry of N-type ATP pyrophosphatases. a In a cano-
nical mechanism using a carboxylic acid substrate, NAD+ synthetase
catalyzes adenylation of NaAD (9.1) to form a NaAD-AMP inter-
mediate (9.2), which reacts with an ammonia nucleophile to form a
NAD+ primary carboxamide product (9.3). The ammonia is typically,
but not always, derived from hydrolysis of the side-chain amide of
glutamine (Gln → Glu + NH3) by a separate glutamine amido-
transferase domain or subunit. b In a mechanistic variant using a non-
carboxylic acid substrate, GMP synthetase catalyzes adenylation of the
urea oxygen of XMP (9.4) to form an XMP-2-AMP O-adenylyl iso-
urea intermediate (9.5), which reacts with an ammonia nucleophile to
form a GMP guanidine product (9.6). GMP guanosine-5′-O-mono-
phosphate, NaAD nicotinic acid adenine dinucleotide, XMP xantho-
sine 5′-O-monophosphate

332 M. C. Lux et al.



identified in biosynthetic pathways of other siderophores,
including aerobactin, alcaligin, anthrachelin, legiobactin,
petrobactin, staphyloferrins A and B, rhizoferrins, and
vibrioferrin [24, 89, 90]. Several of these enzymes have
been characterized structurally, including AsbB (petro-
bactin) [93], IucA and IucC (aerobactin) [94, 95], and AlcC
(alcaligin, putative) [96].

BioW acyl-CoA synthetases

Recently, a ninth class of adenylate-forming enzymes was
discovered. The pimeloyl-CoA synthetase BioW comprises
a new catalytic fold for adenylate-forming enzymes, with
the active site sandwiched between a small N-terminal
domain and a larger C-terminal domain [39, 40] (Fig. 2h). It
catalyzes activation of pimelate (12.1) to form pimeloyl-
AMP (12.2), followed by thioesterification with CoA to
form pimeloyl-CoA (12.3), an intermediate in biotin bio-
synthesis (Fig. 12). Interestingly, this enzyme has been
shown to be capable of proofreading, similar to aminoacyl-
tRNA synthetases, by hydrolysis of non-cognate adenylate
intermediates.
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Natural product-inspired design of adenylate-
forming enzyme inhibitors

Natural products have provided essential inspiration for the
development of inhibitors of adenylate-forming enzymes. In
particular, the sulfamoyladenosines are a small family of
natural products that contain a unique sulfamate moiety
(Fig. 13). The first member of this class, nucleocidin (13.1),
was reported in 1957 by researchers at American Cyanamid
as a potent antitrypanosomal [97, 98], although its complete
structure was not elucidated until 1969 [99]. Its mechanism
of action was originally proposed to involve inhibition of
protein synthesis [100], although more recent work has
implicated inhibition of ubiquitin-family E1 activating
enzymes as another potential mechanism [101]. The des-
fluorinated analogue AMS (13.2) has been studied exten-
sively [102, 103] as a more readily synthesized analogue
[104, 105] and has also been isolated as a natural product in
its own right in 1986 [106]. Another close analogue, AT-
265 (13.3), was isolated in 1982 [107].

A novel family member, ascamycin (13.4), was isolated
in 1984 as an antibiotic that also inhibits protein synthesis
but is more selective than AT-265 [108]. Interestingly,
bacteria sensitive to ascamycin were found to dealanate the
natural product to form AT-265, the presumed active spe-
cies [109].

In pioneering work, Ishida and colleagues [110] recog-
nized that ascamycin was also a close analogue of alanyl-
AMP, the reaction intermediate formed by alanyl-tRNA
synthetase. As no co-crystal structures of aminoacyl-tRNA
synthetases with their cognate aminoacyl-AMP inter-
mediates had yet been reported, they posited that the acyl
sulfamate moiety could act as a stable, non-hydrolyzable
bioisostere of the labile acyl phosphate. Thus, they syn-
thesized alanyl-AMS and showed that it is a competitive
inhibitor of alanyl-tRNA synthetase. As a result, numerous
co-crystal structures of aminoacyl-tRNA synthetases with
aminoacyl-AMS inhibitors were reported (vide infra).
Based on this seminal discovery, the acyl-AMS inhibitor
design platform has subsequently been expanded to a wide
range of other adenylate-forming enzymes.

Rational design of acyl-AMS inhibitors of
adenylate-forming enzymes

The seminal work of Ishida and colleagues [110] demon-
strated that alanyl-AMS could be used to inhibit an alanyl-
tRNA synthetase. As adenylate-forming enzymes typically
bind their cognate acyl-AMP reaction intermediates (14.1)
tightly between the adenylation and acylation half-reactions,
this suggested that the acyl-AMS (14.2) inhibitor design
strategy could be applied broadly to other members of the
mechanistic superfamily (Fig. 14). Indeed, several research
groups have used this approach effectively to target six out
of the nine classes of adenylate-forming enzymes. Typi-
cally, the identity of the acyl group provides substantial
selectivity for the targeted enzyme, while modifications
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to the sulfamate, ribose, and adenine motifs can be used
to modulate potency, specificity, and pharmacological
properties.

Inhibitors of class I aminoacyl-tRNA synthetases and
related enzymes

Following the precedent set by Ishida and colleagues [110]
above, a number of class I aminoacyl-tRNA synthetases
have been co-crystallized with aminoacyl-AMS analogues
(15.1), or the corresponding sulfamides (15.2), that mimic
the cognate aminoacyl-AMP intermediate (3.2) [111–117]
(Fig. 15). Notably, carbonyl-reduced aminoalkyl-AMP
analogues (15.3) have also been used as non-hydrolyzable
mimics of the adenylate intermediate, but tend to be more
effective against class I aa-tRNA synthetases than class II
aa-tRNA synthetases [118]. In most class I enzymes, the
carbonyl group of the aminoacyl-AMP intermediate does
not interact with active-site residues, consistent with its
dispensability for binding. In contrast, in class II enzymes,
this carbonyl interacts with a conserved arginine side chain,
consistent with the decreased affinity of the carbonyl-
reduced analogues in these cases.

In addition to the fundamental mechanistic interest in
aminoacyl-tRNA synthetases, these enzymes are implicated
in a wide range of human diseases [2] and have attracted
particular interest as antibacterial targets [25]. However,
achieving selective inhibition of a bacterial aminoacyl-
tRNA synthetase over the corresponding human enzyme
presents a significant challenge. Along these lines,
researchers at Cubist Pharmaceuticals found that replace-
ment of the adenine moiety in isoleucyl-AMS with het-
erocyclic motifs (15.4, CB-168; 15.5, CB-432) provided
over two-log selectivity for bacterial isoleucyl-tRNA

synthetases over the human enzyme [119, 120] (Fig. 15).
Further, CB-432 exhibited in vitro antibacterial activity and
in vivo efficacy in a mouse model of Streptomyces pyogenes
infection. However, high serum protein binding precluded
further development of this compound. It has been noted
that the zwitterionic character of aminoacyl-AMS inhibitors
may limit their cell permeability and other pharmacological
properties [25]. To address this problem, dipeptidyl-AMS
prodrugs (not shown) have been investigated as anti-
bacterials postulated to be taken up by peptide transporters
then cleaved by intracellular peptidases to release the
parent aminoacyl-AMS inhibitors [121, 122]. In addition,
analogues of aminoacyl-AMS inhibitors have been inves-
tigated as treatments for psoriasis [123] and as immuno-
suppressants [124].

Intriguingly, Lee and colleagues [125–127] have
recently developed analogues of leucyl-AMS (not shown)
as potential anticancer agents. However, rather than
inhibiting the catalytic activity of leucyl-tRNA synthe-
tase, these analogues selectively block a second, non-
catalytic function, in which the protein acts as a leucine-
sensing GTPase activating protein for Rag GTPase,
leading to activation of the mTORC1 complex that reg-
ulates protein translation and cell growth [128, 129].
Although the parent inhibitor leucyl-AMS exhibited
nonspecific cytotoxicity against both cancer and normal
cell lines, two analogues had selective activity against
several cancer cell lines, presumably by selectively tar-
geting this second, non-catalytic function [125].

Pantothenate synthetase (PanC), which shares the same
fold as Class I aminoacyl-tRNA synthetases, has also been
identified as a potential antibacterial target, as it is required for
pantothenate biosynthesis in microorganisms, plants, and
fungi, but is not found in humans [130] (Fig. 16). Pantothe-
nate (3.4) is a key precursor to the phosphopantetheine moiety
of coenzyme A and ACPs. The first potent, selective inhibi-
tors of pantothenate synthetase were developed by Abell and
colleagues [130, 131], using acyl-AMS analogues (e.g.,
(2RS)-16.4) to mimic the pantoyl-AMP reaction intermediate
(16.2), providing sub-µM inhibition of the enzymes from
E. coli and Mycobacterium tuberculosis. Subsequently,
Aldrich and colleagues [132] reported a stereoselective
synthesis of (2R)-16.4 as well as additional analogues.
Notably, all of these analogues were modified relative to the
parent pantoyl-AMS inhibitor (16.5) to avoid lactonization of
the pantoyl side chain. In the case of the 4-deoxy analogues
shown, this results in loss of a putative hydrogen-bonding
interaction with Gln-72, which was observed in the co-crystal
structure of theM. tuberculosis PanC with pantoyl-AMP [48].
Moreover, none of these compounds were reported to exhibit
activity in whole-cell assays.

Mycobacterial cysteine ligase (MshC) is another enzyme
that shares the Class I aminoacyl-tRNA synthetase fold and
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has been identified as a potential antibacterial target
(Fig. 17) [17, 49]. MshC catalyzes an intermediate cysteine
ligation step in the biosynthesis of mycothiol (3.5), the
small-molecule thiol that is used by actinomycetes,
including mycobacteria, instead of glutathione to counter
oxidative stress and electrophilic toxins. Mycothiol pro-
duction is thought to play a key role in mycobacterial sur-
vival and pathogenicity. Blanchard and colleagues [49]
have used cysteinyl-AMS (17.5) to mimic the cognate
cysteinyl-AMP reaction intermediate (17.2), enabling crys-
tallization of MshC. Although cysteinyl-AMS would also
be expected to inhibit cysteine-tRNA synthetases, which
have conserved active-site residues [133], the structural
information provided by this tool compound may enable
development of selective MshC inhibitors in the future.

Inhibitors of class II aminoacyl-tRNA synthetases
and related enzymes

As discussed above, class II aminoacyl-tRNA synthetases
also represent potential therapeutic targets [2, 25] and
aminoacyl-AMS mimics of the cognate aminoacyl-AMP
reaction intermediate have been used widely in crystal-
lographic studies [134–138]. Further, the prokaryotic

enzyme AS-A (encoded by asnA) shares the same protein
fold as aminoacyl-tRNA synthetases and has served as
inspiration for development of inhibitors of human aspar-
agine synthetase (ASNS), which is implicated in resistance
to asparaginase therapy in acute lymphoblastic leukemia
[10, 11]. Interestingly, human ASNS is structurally unre-
lated to prokaryotic AS-A and instead has homology to a
second prokaryotic enzyme, AS-B (encoded by asnB),
which is an N-type ATP pyrophosphatase [10, 11].
Furthermore, although AS-A directly uses ammonia for
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Fig. 16 Inhibition of panthothenate synthetase (PanC). a PanC cata-
lyzes adenylation of pantoate (16.1) to form a pantoyl-AMP inter-
mediate (16.2), which reacts with a β-alanine amine nucleophile to
form a pantothenate amide product (3.4), en route to phospho-
pantetheine (16.3). b A 4-deoxypantoyl-AMS inhibitor (16.4) mimics
the pantoyl-AMP intermediate (16.2) but lacks the 4-hydroxy group of
pantoyl-AMS (16.5) to avoid decomposition via lactonization of the
pantoyl side chain. *Stereochemistry epimeric or as shown
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Fig. 18 Inhibition of asparagine synthetase A. Structures of aspartyl-β-
AMP reaction intermediate (4.3) and transition-state mimetic sulfox-
imine adenylate inhibitor (18.1)
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conjugation to the β-carboxylate of aspartate, AS-B and
ASNS include a glutamine amidotransferase domain that
hydrolyzes the side-chain amide of glutamine to generate
ammonia, which is transported through a tunnel to the
adenylation active site for coupling to asparate [69, 139].
Nonetheless, both mechanisms involve formation of an
aspartyl-β-AMP reaction intermediate (4.3) (Fig. 18). Early
efforts to develop ASNS inhibitors by Oda and colleagues
[140] used a sulfoximine adenylate (18.1) as a transition-
state mimic, which was a potent inhibitor of E. coli AS-A,
and later shown to inhibit both E. coli AS-B and human
ASNS [141, 142]. This work also led to the development of
an acyl-AMS inhibitor (not shown), discussed below [143].

Inhibitors of ANL family enzymes

Acyl-CoA synthetases

The first acyl-CoA synthetase inhibitors were carbonyl-
reduced alkyl-AMP mimics of the cognate acyl-AMP
reaction intermediate [144]. Such inhibitors have also
been leveraged in structural studies of acetyl-CoA synthe-
tase [51] as well as other acyl-CoA synthetases [145, 146].
Several bacterial acyl-CoA synthetases have been identified
as promising antibacterial targets. However, as alkyl-AMP
inhibitors are presumed not to be cell-penetrant, efforts to
develop inhibitors of these acyl-CoA synthetases have
focused primarily on the acyl-AMS design.

The OSB-CoA (o-succinylbenzoate-CoA) synthetase
MenE is one such target that is involved in bacterial
menaquinone biosynthesis [147] (Fig. 19). Menaquinone
(19.4; vitamin K2) is the sole electron transport chain qui-
none used in cellular respiration by Gram-positive bacteria,
mycobacteria, and anaerobically growing Gram-negative
bacteria. Tan, Tonge and colleagues [148] developed the

first designed inhibitors of MenE, using methyl esters of
OSB-AMS (19.5) and related sulfonyladenosines (not
shown) to mimic the cognate OSB-AMP reaction inter-
mediate (19.2). Contemporaneously, Mesecar and collea-
gues [149] reported studies of a trifluoromethyl analogue
(19.6). In both cases, the aromatic carboxylate was masked,
presumably in an effort to avoid cell penetration issues, but
none of these compounds exhibited whole-cell antibacterial
activity. Tan, Tonge, and colleagues [150, 151] later
showed that the parent carboxylate, OSB-AMS (19.7), was
a much more potent MenE inhibitor and exhibited modest
antibacterial activity. These researchers further showed that
the OSB moiety could be replaced with a difluorindanediol
(19.8), thus removing one of the two negative charges in
OSB-AMS [151, 152].

Pseudomonas aeruginosa anthranilyl-CoA synthetase
(PqsA) is another ANL family member that has been
identified as a potential antibacterial target [153] (Fig. 20).
PqsA is involved in the biosynthesis of the quinolone
quorum-sensing factors PQS (20.5; Pseudomonas quino-
lone signal; 3,4-dihydroxy-2-heptylquinoline) and HHQ
(20.4; 2-heptyl-4-hydroxyquinoline), which bind the tran-
scriptional activator MvfR (PqsR) and induce expression of
a variety of virulence factors. Tan and colleagues [154]
developed anthranilyl-AMS (20.6) and several analogues as
inhibitors of PqsA that mimic the cognate anthranilyl-AMP
reaction intermediate (20.2). However, although these
compounds were potent biochemical inhibitors, they
exhibited very weak activity in cell culture, which was
attributed to poor cell penetration.

Plant 4-coumaroyl-CoA ligases (4CL) have also
been advanced as potential targets for modulation of
plant phenylpropanoid biosynthesis in biofuel applications
[146, 155]. Toward this end, Watanabe and colleagues
[156] recently reported evaluation of a series of
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4-coumaroyl-AMS analogues (not shown) against 4CL
from five plant species.

NRPS adenylation enzymes

NRPS are used in the biosynthesis of a wide range of
microbial natural products, including antibiotics and viru-
lence factors [16, 27]. NRPS adenylation domains, as well
as separate adenylation enzymes, are responsible for acti-
vating amino acids and other carboxylic acids and loading
them onto the NRPS assembly line via the phospho-
pantetheine thiol on PCP (peptidyl carrier protein or thio-
lation) domains (Fig. 21). By analogy to previous inhibitors
of mechanistically related aminoacyl-tRNA synthetases,
Marahiel and colleagues [157] first described a general
approach to specific inhibition of NRPS adenylation
domains using phenylalanyl-AMS (21.7) to target the
gramicidin S synthetase A subunit (GrsA) phenylalanine
adenylation domain (PheA) and leucyl-AMS (21.8) to
target the surfactin synthetase C subunit (SrfA-C)
leucine adenylation domain (LeuA). They also reported a
2′-O-biotinylated analogue of phenylalanyl-AMS (not
shown) for affinity purification experiments. These com-
pounds were advanced as tools to study and potentially to
alter the specificity of NRPS adenylation domains. Indeed,
several groups have subsequently used aminoacyl-AMS
inhibitors and related affinity probes in biochemical,

proteomic, structural, and reprogramming studies of NRPS
adenylation domains [158–164]. In an elegant application of
this inhibitor design to potential therapeutics, Marahiel and
colleagues [165] have also developed D-alanyl-AMS (not
shown) as an antibiotic targeting the D-alanine:D-alanyl
carrier protein ligase (DltA) involved in lipoteichoic acid
biosynthesis in Gram-positive bacteria.

Subsequently, Tan, Quadri and colleagues [166] devel-
oped macrocyclic acyl-AMS analogues (22.2) to provide
specificity for NRPS amino acid adenylation domains over
the corresponding aminoacyl-tRNA synthetases (Fig. 22).
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Recognizing that both class I and class II aminoacyl-tRNA
synthetases bind their acyl-AMP reaction intermediates in
relatively extended conformations (22.4) while ANL family
enzymes bind these intermediates in “cisoid” conformations
(22.5), they installed a linker between C8 of the adenine
ring and Cβ of the amino acid to enforce the cisoid phar-
macophore. These macrocycles were potent inhibitors of the
cysteine adenylation domain from the Yersinia pestis yer-
siniabactin synthetase HMWP2 (high molecular weight
protein 2) subunit, which is involved in the biosynthesis of
the siderophore yersiniabactin (22.1), and did not inhibit
any aminoacyl-tRNA synthetases in an in vitro translation
assay. However, these zwitterionic compounds did not
exhibit whole-cell activity, presumably due to poor cell
penetration [167]. To address this problem, the corre-
sponding α-hydroxyacyl macrocycles (22.3) and linear

congeners (not shown) were also investigated, but these
compounds were weaker inhibitors by two to three orders of
magnitude, which was attributed to loss of a key electro-
static interaction of the α-amino group with a conserved
active-site asparate residue [168].

Salicylate adenylation enzymes are another group of
ANL family members that have attracted considerable
attention as promising antibacterial targets [169] (Fig. 23).
These enzymes activate the starter units in hybrid NRPS-
polyketide biosynthetic pathways leading to aryl-capped
siderophores. Siderophores are iron-chelating natural pro-
ducts that are used by pathogenic bacteria to capture iron, an
essential nutrient, from the human host [28, 86, 87]. Quadri,
Tan and colleagues [170] reported the first designed side-
rophore biosynthesis inhibitors using salicyl-AMS (23.5) to
mimic the cognate salicyl-AMP reaction intermediate (23.2)
of the salicylate adenylation enzymes M. tuberculosis
MbtA, Y. pestis YbtE, and P. aeruginosa PchD, which are
used in the biosynthesis of the siderophores mycobactin
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(23.4), yersiniabactin (22.1, Fig. 22), and pyochelin (not
shown), respectively. These potent, tight-binding inhibitors
also exhibited activity in cell culture as well as antibacterial
efficacy in a mouse model of tuberculosis [171, 172].
However, further preclinical development was hampered by
a short pharmacokinetic half-life and dose-limiting toxicity.
Extensive structure–activity relationship studies by Aldrich
and colleagues [7, 173–178] provided a comprehensive
view of modifications in every region of the lead compound
and identified analogues with improved pharmacological
properties. Most recently, they have developed a series of
constrained cyclic analogues in which part of the acyl sul-
famate linker is replaced with a heterocycle to provide
improved pharmacological properties (23.6) [178]. Impor-
tantly, this work established synthetic routes to diverse acyl-
AMS analogues that can be applied broadly to inhibitors of
other adenylate-forming enzymes. It also enabled develop-
ment of a photoaffinity probe for mechanism-of-action
studies of salicyl-AMS M. tuberculosis [179] and inspired a
number of vinyl sulfonamide probes designed to trap the
incoming thiol nucleophile in the second half-reaction
[180–183]. Related aroyl-AMS inhibitors (not shown) have
also been developed for a number of other aryl adenylation
enzymes, including Bacillus subtilis DhbE in bacillibactin
biosynthesis [184], Bacillus anthracis AsbC in petrobactin

biosynthesis [185], mycobacterial FadD22 in phenolic
glycolipid biosynthesis [186], Acinetobacter baumannii
BasE in acinetobactin biosynthesis [187], and E. coli EntE
in enterobactin biosynthesis [188].

Fatty acyl-AMP ligases (FAALs) are another subset of
the ANL family that have been identified as potential
antibacterial targets based on their use in lipid virulence
factor biosynthesis and metabolism in mycobacteria [189]
(Fig. 24). These enzymes transfer the fatty acyl chain to
an ACP domain of a polyketide synthetase, making them
mechanistically analogous to NRPS adenylation domains
[190]. A second subfamily, fatty acyl-CoA ligases
(FACLs), transfer the acyl group to CoA and are analo-
gous to acyl-CoA synthetases. Gokhale and colleagues
[189] have reported a series of fatty acyl-AMS analogues
(24.10–24.12) as inhibitors of both FAALs and FACLs,
and these compounds exhibited modest antibacterial
activity in M. tuberculosis and Mycobacterium smegmatis
cell culture. Anderson and colleagues [191] have also
used a related acyl-AMS inhibitor in structural studies of
M. tuberculosis FadD32, a potential target to inhibit
mycolic acid biosynthesis.

Firefly luciferase

Branchini and colleagues [192] developed dehydroluciferyl-
AMS (25.1) as an oxidation-resistant analogue of the cognate
luciferyl-AMP reaction intermediate (5.6), owing to the lack
of an α-hydrogen (Fig. 25). This inhibitor was subsequently
used by Kato and colleagues to study conformational changes
in wild-type luciferase and a mutant known to shift lumi-
nescence from yellow–green to red [57]. This structural
information was then used to design additional luciferase
mutants that emitted light at different wavelengths.

Inhibitors of ubiquitin-family E1 activating enzymes

Conjugation of Ub and other Ubl modifier proteins controls
a host of cellular processes including protein homeostasis,
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cell cycle progression, and transcriptional regulation [5].
This complex process is catalyzed by a cascade of three
enzymes, the first being an E1 activating enzyme that
adenylates the C-terminal diglycine motif of the Ub/Ubl,
then forms a thioester to a remote catalytic cysteine on the
E1 enzyme [36] (Fig. 6). Notably, early co-crystal structures
of E1s with Ubls and ATP showed the substrates bound in
the adenylation active site [193, 194], in contrast to other
adenylate-forming enzymes where the acyl-AMP reaction
intermediate is typically observed. Moreover, the catalytic
cysteine residue was over 30 Å away from the adenylation
active site [193–195]. To probe the molecular mechanism of
E1 catalysis, Tan, Lima and colleagues [60, 196] used
native chemical ligation of truncated Ubls with synthetic
peptides to generate Ubl-AMSN sulfamide mimics (25.1) of
the Ubl-AMP reaction intermediates (6.2) and Ubl-AVSN
vinyl sulfonamide probes (25.2) designed to trap the cata-
lytic cysteine nucleophile covalently (Fig. 26a). Biochem-
ical studies showed that the SUMO (small ubiquitin-like
modifier) and Ub probes were specific for their respective
E1s. Structural studies then revealed that nucleophilic
addition in the second half-reaction was accompanied by a
130° rotation of the cysteine-containing domain as well as
remodeling of nearly half of the residues in the active site.
This domain alternation is reminiscent of conformational
changes in the ANL family [35]. Importantly, this work
extended the applications of the acyl-AMS inhibitor design
platform beyond small-molecule substrates to proteins and

also highlighted the power of these inhibitors to elucidate
mechanistic insights that had resisted classical biochemical
efforts for over 30 years.

Notably, Soucy and colleagues [197] at Millenium
Pharmaceuticals discovered a potent small-molecule inhi-
bitor of the NEDD8 E1 activating enzyme, designated
MLN4924 (26.4; pevonedistat), derived from a high-
throughput screening and medicinal chemistry campaign
(Fig. 26b). This compound has advanced to Phase I and II
clinical trials for a variety of cancers. Contemporaneously
with the mechanistic studies of Tan, Lima and colleagues
[196] above, Brownell and colleagues [101] at Millenium
discovered that MLN4924 actually acted as a prodrug that
reacted with the NEDD8 E1 thioester (26.3) to form a
NEDD8-MLN4924 inhibitor (26.5) via a reverse reaction.
This inhibitor is analogous to Ubl-AMSN, albeit with sev-
eral modifications that confer specificity for formation by the
NEDD8 E1. They further showed that an AMS analogue
having a indane at the adenine-6-N-position (26.6) formed
analogous adducts with NEDD8, SUMO, and Ub catalyzed
by the corresponding E1 enzymes (Fig. 26c). This suggested
that this AMS-based prodrug strategy might be applicable to
other E1 enzymes and, recently, a Ub E1-selective inhibitor,
TAK-243 (26.7; MLN7243) was developed and has
advanced to Phase I clinical trials [198]. Building upon this
work, Statsyuk and colleagues [199, 200] have used this
strategy to develop activity-based AMS-alkyne probes (not
shown) of Ub/Ubl signaling pathways.
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Bacterial MccB enzymes are structurally related to
eukaryotic E1 enzymes and catalyze adenylation reactions
at the C terminus of peptide substrates during the bio-
synthesis of microcin Trojan horse antibiotics [64].
Recently, Severinov and colleagues [65] discovered a novel
microcin-like biosynthetic pathway in B. amyloliquefaciens
in which the peptide substrate is cytidylated rather than
adenylated (27.1) (Fig. 27). They used aspartyl-AMS (27.3)
and the corresponding cytidylate analogue (27.4) as analo-
gues of processed microcins and demonstrated that both
inhibited aspartyl-tRNA synthetase.

Inhibitors of biotin protein ligases

Inhibitors of the E. coli biotin repressor BirA were first
developed by Brown and Beckett [201] as tool compounds
to study enzyme structure and function (Fig. 28). They
demonstrated that both biotinyl-AMS (28.2) and the
carbonyl-reduced intermediate analogue biotinol-O-AMP
(28.1) were tight-binding inhibitors that could be used to
activate BirA dimerization and binding to the bioO operon
[201, 202].

Subsequently, Aldrich and colleagues [203–206] pur-
sued a homologous M. tuberculosis biotin protein ligase as
a potential antibacterial target, based on its role in reg-
ulating fatty acid biosynthesis and metabolism via bioti-
nylation of acyl-CoA carboxylases and pyruvate
carboxylase, respectively. Noting spontaneous

decomposition of biotinyl-AMS (28.2) via cyclization to
N3-5′-cycloadenosine (28.4) [104], they investigated the
corresponding sulfamide, biotinyl-AMSN (28.3), which
does not undergo this decomposition pathway and showed
that it is a potent biochemical inhibitor and exhibits pro-
mising in vitro antibacterial activity against M. tubercu-
losis, including multidrug-resistant strains [203].

With Schnappinger and colleagues [207], they further
showed that biotinyl-AMSN (28.3) had synergistic activity
with two first-line tuberculosis drugs in a mouse model ofM.
tuberculosis infection. However, the compound was reported
to undergo cleavage of the acyl sulfamide in vivo. Further-
more, they discovered resistant mutants in in vitro studies,
which overexpressed a dioxygenase Rv3406. Drawing upon
their extensive experience with salicyl-AMS analogues dis-
cussed above, Aldrich and colleagues [204, 206] carried out
analogous structure–activity relationship studies of biotinyl-
AMSN to improve its pharmacological properties. Notably,
they installed a 5′-methyl group on the ribose fragment to
avoid oxidation by Rv3406 [205]. This sets the stage for
further preclinical evaluation of M. tuberculosis biotin pro-
tein ligase as a new antitubercular target.

Inhibitors of N-type ATP Pyrophosphatases

Human asparagine synthetase (ASNS) is upregulated in
asparaginase-resistant forms of acute lymphoblastic leuke-
mia and has been advanced as a potential therapeutic target
[10, 11]. Building upon the earlier work of Oda and col-
leagues [140] on sulfoximine-based inhibitors of bacterial
AS-A (Fig. 18), Richards and colleagues [143] explored
aspartyl-β-AMS (29.1) as a more synthetically tractable
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scaffold to facilitate anticipated medicinal chemistry efforts
(Fig. 29). Although subsequent efforts turned back to the
sulfoximine adenylate scaffold [142], this work demon-
strated the effectiveness of the acyl-AMS inhibitor platform
for targeting an N-type ATP pyrophosphatase and opens the
door to applications of this approach to other enzymes in
this family.

Conclusions

The adenylate-forming enzyme superfamily includes
numerous attractive targets that are of both fundamental and
therapeutic interest. Because of the mechanistic conserva-
tion across the superfamily, many of these targets have been
inhibited effectively using acyl-AMS mimics of the cognate
acyl-AMP reaction intermediate, and certainly one antici-
pates that other targets should be amenable to this same
approach, independent of protein fold (e.g., carbamoyl-
transferases, NRPS-independent siderophore synthetases,
BioW acyl-CoA synthetases).

However, although the acyl-AMS platform typically
provides potent inhibitors, these compounds have several
limitations that are particularly associated with the acyl
sulfamate moiety, including potential hydrolysis, decom-
position by N3-5′-cyclonucleoside formation, and a nega-
tively charged nitrogen that may limit cell penetration and
other pharmacological properties. Thus, although several of
these compounds have advanced to in vivo proof-of-
concept studies in mouse models, medicinal chemistry
efforts are typically required to identify optimized lead
compounds suitable for preclinical development. For-
tunately, extensive structure–activity relationship studies
have already been carried out for several targets. As a result,
synthetic routes are now well-established to modify any
region of the acyl-AMS scaffold. In conjunction with the

availability of co-crystal structures for many of these
enzymes with acyl-AMP intermediates or acyl-AMS inhi-
bitors, this should facilitate development of analogues with
improved or retained biochemical potency and improved
pharmacological properties. In a related vein, it will be
interesting to see whether the AMS-based prodrug strategy
discovered in the context of the NEDD8 E1 inhibitor
MLN4924 [101, 197] may be applicable to other classes of
adenylate-forming enzymes, as these sulfonyladenosines
lack the problematic acyl sulfamate moiety, which is only
formed in situ by the target enzyme itself.

Notably, the highly variable cell penetration observed for
various acyl-AMS inhibitors has also inspired prospective
analysis of the relationships between chemical structure and
bacterial penetration in an activity-independent manner
[167]. This is a poorly understood area that represents a
major current obstacle in antibacterial drug discovery [208–
211]. Initial work by Tan and colleagues [167] using a panel
of acyl-AMS compounds established the feasibility of this
approach in developing predictive models for compound
accumulation in a variety of bacteria and this approach was
recently extended by Hergenrother and colleagues [212] to
a larger collection of diverse structures. These efforts should
facilitate development of acyl-AMS analogues with
improved bacterial penetration, in addition to the bio-
chemical potency and pharmacological properties men-
tioned above.

In summary, natural product-inspired acyl-AMS have
provided a powerful entry into inhibition of adenylate-
forming enzymes. This straightforward inhibitor design
platform has proven effective for a wide range of biologically
and structurally diverse targets. This approach promises to
continue providing tool compounds for fundamental bio-
chemical and cellular studies, as well as therapeutic lead
compounds to address a variety of human diseases.
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