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Abstract
Marine-derived bacteria are a prolific source of a wide range of structurally diverse natural products. This review, dedicated
to Professor William Fenical, begins by showcasing many seminal discoveries made at the University of California San
Diego from marine-derived actinomycetes. Discussed early on is the 20-year journey of discovery and advancement of the
seminal actinomycetes natural product salinosporamide A into Phase III anticancer clinical trials. There are many fascinating
parallels discussed that were gleaned from the comparative literature of marine sponge, tunicate, and bacteria-derived natural
products. Identifying bacterial biosynthetic machinery housed in sponge and tunicate holobionts through both culture-
independent and culture-dependent approaches is another important and expanding subject that is analyzed. Work reviewed
herein also evaluates the hypotheses that many marine invertebrate-derived natural products are biosynthesised by associated
or symbiotic bacteria. The insights and outcomes from metagenomic sequencing and synthetic biology to expand molecule
discovery continue to provide exciting outcomes and they are predicted to be the source of the next generation of novel
marine natural product chemical scaffolds.

Introduction

A brief sketch of seminal discoveries by Professor
Fenical that set the stage for exploring bioactive
substances from marine-derived bacteria

It has become increasingly evident that there is significant
overlap between the biosynthetic machinery of marine-
derived bacteria vs. that of chemically prolific invertebrates,
especially sponges and tunicates. A continuing stream of
statements in both primary research papers and reviews
outline the hypothesis that many invertebrate-derived
compounds are seemingly produced by the action of an
invertebrate microbiome. Thus, microbial symbionts may
be critical to the production of many marine invertebrate

natural products [1]. Relevant to this possibility are two
significant findings. In 2015, a family of complex alkaloids,
containing three tetrahydroisoquinoline moieties, originally
isolated from the tunicate Ecteinascidia turbinate, was
eventually found to be produced by the unculturable bac-
terial endosymbiont Candidatus Endoecteinascidia fru-
mentensis, obtained directly from metagenomic DNA [2].
Similarly, in 2017 it was noted that the unculturable and
ubiquitous endosymbiont Candidatus Entotheonella detec-
ted in sponges including Theonella swinhoei (themselves a
source of a diverse set of molecular structures) possessed
biosynthetic richness akin to that of soil actinomycetes [3].
Thus, building a broad foundation on the biosynthetic
capabilities of unique libraries of marine-derived actino-
mycetes is a requisite for catalyzing future research to gain a
firm understanding about overlapping invertebrate/bacterial
biosynthetic machinery.

The overall goal in this review is to trace selected
examples of intersections in the scaffolds (i.e., biosynthetic
pathways) of complex small molecules from marine spon-
ges and tunicates vs. marine-derived bacteria. In this sec-
tion, our focus is on fundamentals of marine-derived
actinomycetes and discussions about invertebrates will
come later. An obscure study published in 1959 illustrated
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that dozens of marine-derived actinomycetes, as obligate
halophytes, could be isolated, maintained in stable culture,
and further studied [4]. However, for years there was vir-
tually no follow-up work by others especially in terms of
marine natural product compound discovery. As will be
discussed next, many years passed until this situation
changed. The path forward involved challenging risk-taking
research at the University of California San Diego (UCSD)
beginning in the early 1990s. Initially it took almost a
decade of trial-and-error investigations to achieve the first
notable outcomes [5]. A selection of some of the most
striking results is highlighted by the cluster of eight struc-
tures collected in Fig. 1.

It is interesting to note that at UCSD Professor Fenical
often asked the question, “where are the new horizons in
marine bioorganic chemistry?” [6]. We deem that the
selected structures and accompanying annotations shown in
Fig. 1 provide some answers to this crisp question and are
relevant to the discussions contained in the latter sections of
this review. The contents of Fig. 1 span the time window
1999–2020. We invite all readers to examine each structural
drawing, then ponder their significance (shown in each
panel), and gain insights on how this assemblage has cat-
alyzed the defining and subsequently expanding funda-
mental understanding of the chemistry and biology of
marine actinomycete bacteria.

Here is a brief synopsis of selected inspirational mole-
cules discovered at UCSD from actinomycetes. Cyclomarin
(1), the first entry in Fig. 1, embodies a rather complex
scaffold in terms of atom count (C56H82N8O11), chiral
centers (12), and molecular weight (MW= 1043) [7]. It has
bioactivity against organisms that cause malaria and tuber-
culosis is also significant. The Phase III anticancer candi-
date salinosporamide A (2) (Sal A, aka NPI-0052,
marizomib) continuously isolated from Salinispora tropica
in good yields and recently isolated in very low yields from
S. arenicola is a compound that remains of high value more
than two decades after its discovery (see Fig. 2 for a
timeline) [8]. The sporolides A (3) and B, also from S.
tropica, have a fascinating biogenesis including the invol-
vement of a para-benzyne intermediate [9]. The six MRSA
active marinopyrroles headed by the axial chiral atropi-
somer (−)-marinopyrrole A (4) are under intense study by
many labs and the (±) form called maritoclax is commer-
cially available [10]. At first glance ammosamide B (5), a
relatively small achiral pigment (MW= 291) discovered in
2009 might seem unimportant, however, ammosamide A
and B (5) possess potent activity against HCT-116 cancer
cells (IC50= 320 nM) [11]. Also, unlocking the mysteries
about their biosynthesis is stretching molecular genetics
tools to yield new hypotheses for the biosynthetic pathways
of these and other amino acid containing natural products
[12]. (+)-Merochlorin A (6) is a novel MRSA active

tetracyclic chlorinated merosesquiterpene [13]. Even though
X-ray analysis provided relative configuration assignments,
it took an additional 7 years to finalize the absolute con-
figurations of the members of this family through total
synthesis [14]. (−)-Anthracimycin (7) is an antibiotic whose
name celebrates its activity against Bacillus anthracis (MIC
= 0.03 µg/mL) the anthrax bioterrorism weapon [15]. The
complete structure of neaumycin B (8), a spectacularly
potent cytotoxin (IC50= 0.07 pM) against U87 human
glioblastoma, was recently deduced by the UCSD team and
updated two incomplete previous reports by others [16].
Interestingly, several actinomycetes strains are a source of
this unique spiroketal containing polyketide.

The salinosporamide story—from a marine
actinomycete-derived natural product to clinical
trials

There are only a few marine natural products that have
progressed through the advanced stages of clinical trials or
gained FDA approval for therapeutic use. Sal A (2) (aka
NPI-0052 or marizomib) [8] is an important member of this
select group (see Fig. 3) because of its recent (2020) entry
into Phase III clinical trials [17]. “Sal A” (structure shown
in Fig. 1 with selected background information) is produced
from a surprisingly complex biosynthetic pathway. Shown
in Fig. 2 is the 20-year timeline from the isolation and
characterization of 2 from a salt-water obligate marine
actinomycete, Salinispora (strain CNB-392) to its entry into
Phase III anticancer clinical trials.

We will not reiterate the many details shown in Fig. 2 but
will instead focus on some additional factors. (1) “Sal A”
(2) was initially targeted for additional SAR, biosynthetic,
and experimental therapeutic investigations. This was
motivated by the potent, selective results in the NCI’s 60-
cell-line panel with a mean GI50 < 10 nM and greater than a
4 log LC50 differential between resistant and susceptible
cell lines. The greatest potency of 2 was observed against
NCI-H226 non-small cell lung cancer, SF-539 brain tumor,
SK-MEL-28 melanoma, and MDA-MB-435 melanoma all
with LC50 values <10 nM [18]. (2) In 2005, a public
(UCSD)–private partnership (Nereus) successfully launched
preclinical evaluation culminating an Investigational New
Drug application to initiate clinical testing on 2 [19, 20]. (3)
Early on, the anticancer molecular target was identified
when 2 was tested against purified 20S proteasome, it
inhibited proteasomal chymotrypsin-like proteolytic activity
with an IC50 value of 1.3 nM. This action is similar to that
of omuralide [21], a known inhibitor of proteasome which
has structural similarities but important structural defi-
ciencies for bioactivity vs. 2. (4) Even though many,
somewhat lengthy, total syntheses have been published
[22], a scale-up saline fermentation is being used to provide
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natural 2 from strain NPS21184 via a current good manu-
facturing practice scheme [18]. (5) An important encoura-
ging finding is that 2 can cross the blood-brain barrier,
motivating the Phase III clinical trials in patients with
glioblastoma [17]. In summary, an unusual marine-derived
shallow and deep-water salt obligate actinomycete has
provided 2 as a promising new treatment for glioblastoma,
the cancer that killed Sen. John McCain.

Comments on the recent drug development
progress for bioactive marine natural products
derived from sponges, tunicates, or bacteria

In section “The salinosporamide story—from a marine
actinomycete-derived natural product to clinical trials,” we
noted that the list is very short for marine natural products
that have successfully progressed through advanced clinical
trials or gained FDA approval for therapeutic use. This
outcome is unusual because the idea of drugs from the sea
has been on the table since the late 1960s [23]. There have
been countless reviews that have examined the progress on
this topic [24]. Nonetheless, some brief milestones include
that in December 2004, the US Food and Drug Adminis-
tration approved the first totally marine-derived drug, Prialt®

to treat chronic and severe pain. This compound originally
named ziconotide was isolated from the cone snail Conus
magus [25–27]. By 2016, there were seven FDA or EMA
approved small molecule drugs based on marine natural
products [28], and as of 2020 the count is up to 12 [29].
Currently, there are many other promising scaffolds in the
pipeline [29]. We believe that the most important current
and future opportunities for marine inspired clinical

therapeutics have and will continue to come from marine
invertebrates (in particular sponges and tunicates) and
bacteria. Examples of proof-of-concept outcomes will be
discussed here, and the current successes illustrate that the
past obstacles primarily associated with the supply problem
during preclinical and clinical development can be over-
come [30]. In this regard, the varying strategies that have
been successful range from scale-up fermentation, total
synthesis, invertebrate mariculture, and partial synthesis
from precursors available from bacterial fermentation. As
the exploration of the microbial origin of many invertebrate-
derived natural products expands, strategies involving
synthetic biology and the expression of key biosynthetic
pathways are on the horizon. These roadblock busting
strategies are often discussed in reviews and are briefly
highlighted in some sections below.

The focus of our treatise next is to underscore the out-
standing potential for drug development based on sponge,
tunicate, and bacterial-derived natural products. Currently, 5
out of 12 marine-derived drugs in the FDA approved
portfolio are from sponges (3) and tunicates (2) (Fig. 3).
There are currently no approved therapeutics from marine
bacteria, however, it is very important to note, as shown in
Scheme 1, that a large percentage of sponge and tunicate
overall mass is attributed to the associated microbiome of
these organisms [31–34]. In the case of sponges, many have
a significant microbial biomass (up to 35% of the total) and
some of the most chemically rich taxa high in microbial
abundance (HMA) sponges have been shown to have
associations with both gram-positive and gram-negative
bacteria. A similar situation can be seen for the tunicate
holobiont—significant biomass of bacterial associates,

Fig. 2 Salinosporamide A (aka “Sal A”, NPI-0052, marizomib)—an update on the discovery timeline from the initial isolation, structure
elucidation, scale-up compound production, chemical biology studies, preclinical evaluation, through cancer clinical trials
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dominated by gram-negative bacteria. We will discuss in
greater detail below, the important role such bacteria play in
the biosynthetic origin of these approved therapeutics.

A summary of therapeutics approved for clinical use or
currently in Phase II/III clinical trials from sponges,

tunicates, and bacteria is presented in Fig. 3. There are a
larger number of marine natural products that have been
examined in clinical trials and eventually dropped. Cur-
rently, there is no comprehensive review of such com-
pounds, but important insights can be gleaned from a 2014

Scheme 1 A selective view of
the holobiont of sponges and
tunicates—varying bacterial
biomass and dominate
bacterial taxa

Fig. 3 Summary of therapeutics approved for clinical use or currently in Phase II/III clinical trials, inspired by or based on compounds isolated
from sponges, tunicates, or marine-derived actinomycetes. I= invertebrate source; B= bacterial producer
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American Society of Pharmacognosy meeting lecture [35].
The assemblage of eight compounds in Fig. 3 includes
representatives from all three of the taxa mentioned above.
The tremendous developmental success for Sal A (2) with
the preclinical work being driven by compound obtained
from scale-up fermentation of the actinomycete Salinispora
strain NPS21184 was discussed above (Fig. 2, section “The
salinosporamide story—from a marine actinomycete-
derived natural product to clinical trials”). The collection
in Fig. 3 also includes the following sponge-derived (phy-
lum Porifera) molecules. (1) Cytarabine (9) and vidarabine
(10) are D-arabinose containing nucleosides that were iso-
lated from Cryptotethya crypta and are considered by some
as the first marine-derived approved pharmaceuticals [36].
Cytarabine is still used in treatments against various forms
of leukemia and non-Hodgkin’s lymphoma [37], while
vidarabine was an antiviral drug that is active against
poxviruses, herpes viruses, some rhabdoviruses, hepadna-
viruses, and RNA tumor viruses [38]. However, with the
advancement of less toxic and more metabolically stable
antivirals vidarabine was discontinued in the US in 2001
[29]. (2) Eribulin mesylate (11) (aka Halaven®) consists of
the macrocyclic lactone pharmacophore of the natural pro-
duct halichondrin B, a compound that was isolated in
extremely low yields from Halichondria okadai and is
hypothesized to be produced by an associated bacterium
[39, 40]. This polyketide is currently used to treat metastatic
breast cancer and inoperable liposarcoma [41]. Lastly, (3)
plocabulin (12) was originally isolated from Lithoplocamia
lithistoides and is currently in Phase II clinical trials for
patients with advanced malignancies [42, 43].

A total of three tunicate-derived (phylum Chordata)
natural products are in clinical use or late stage clinical
trials. (1) ET-743 (13) (aka trabectedin, Yondelis®), isolated
from Ecteinascidia turbinate, is currently in use to treat
soft-tissue sarcoma and ovarian cancer [44]. (2) Lurbi-
nectedin (14) (aka Zepsyre®) is a synthetic derivative of ET-
743 that has been shown to have a substantially higher
tolerated dose than its natural product counterpart [45], as
well as higher overall survival, progression-free survival,
and overall response rates in Phase III clinical trials against
ovarian cancer [46]. (3) Plitidepsin (15) (aka Aplidin®,
dehydrodidemnin B) was originally isolated from Aplidium
albicans, has been approved in Australia for use against
multiple myeloma [47], and has exhibited activity against
the human coronavirus HCoV-229E, suggesting it could be
an effective agent against the current outbreak of COVID-
19 [48]. The bioactive 15, which was isolated from its
tunicate host in high yields, is structurally related to
didemnin B (67) from Tistrella bacteria [49, 50], and it is
currently manufactured by total synthesis [51].

It is important to emphasize that during the discovery
of some invertebrate-associated compounds, such as

halichondrin B (sponge) and ET-743 (13) (tunicate),
hypotheses were formulated and subsequently proven (see
section “The possible bacterial biosynthetic origin of
molecules isolated from sponges and tunicates—the case
made by analyzing isolated yields, similar scaffolds, or
results from culture-independent insights”) that the true
biosynthetic sources for some molecules are associated
bacteria. A summary of a few general supporting observa-
tions that stimulate additional inquiry on this topic is: (1)
when similar classes of compounds are extracted from
invertebrates of diverse taxonomic origin; (2) when a large
percentage of some marine invertebrates’ overall mass is
attributed to the associated microbiome (Scheme 1); and (3)
when natural products isolated from invertebrates possess
similar chemical scaffolds vs. that of bacterial natural pro-
ducts [52, 53].

The possible bacterial biosynthetic origin of
molecules isolated from sponges and
tunicates—the case made by analyzing
isolated yields, similar scaffolds, or results
from culture-independent insights

It is essential to further discuss four compounds shown
above in Fig. 3 that are currently used as medicines and
whose origins included sponges or tunicates. This list
consists of: cytarabine (9), eribulin mesylate (11), ET-743
(13), and dehydrodidemnin B (15). Here is an important
question: are their clues in the development trajectory of
these compounds to imply that bacterial-derived pathways
are functional in their biosynthesis? Another question—are
these compounds present at extremely low concentrations
from the invertebrate also implying a bacterial origin? Early
on, Professor Fenical championed the bacterial origin the-
ory stating in his 1993 review paper, “The importance of
bacterial symbiosis is growing in recognition that bacteria
may be the true producers of many compounds isolated
from sponges, ascidians, and other marine invertebrates.”
[54]. The possibility that true biosynthesis occurs by sym-
bionts is directly relevant for two of the aforementioned
compounds, 11 and 13. However, this does not apply to 9,
which is isolated in high yields from sponges and dis-
covered by medicinal chemistry. Also, the situation for 15 is
perhaps enigmatic, as it was isolated in high yields from the
Aplidium (tunicate) and is almost identical to didemnin B
(67), which was obtained in high yields from Aplidium and
in variable yields from marine-derived Tistrella bacteria
[49, 50].

The design of eribulin mesylate (11) arose from the
discovery and elucidation of halichondrin B (C60H86O19), a
potent cytotoxin (IC50= 0.09 ng/mL vs. B-16 melanoma
cancer cells). Halichondrin B was isolated in miniscule

Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria,. . . 509



yields from two disparate sponges, Halichondria okadai
and Lissodendoryx sp. [39]. Its antitumor activity and
pharmacophore were the inspiration for 11. Problematic for
the preclinical development of halichondrin B was that a
scant of 300 mg was obtained from 2000 pounds of Lisso-
dendoryx, which thwarted its extensive preclinical follow-
up. Currently, it is believed that dinoflagellate symbionts in
the sponge are the true biosynthetic source of halichondrin
B [55], and consistent with this idea is that the known
dinoflagellate polyether okadaic acid was isolated from two
species of Halichondria sponges [56].

A similar story to that sketched above is evident for ET-
743 (13) first isolated in very low yields from the tunicate
Ecteinascidia turbinate. Reports of anti-cellular prolifera-
tion were first described as early as 1969 when it was found
that an extract of the Caribbean tunicate killed tumor cells
in vitro and was capable of inhibiting tumor growth in vivo
[57]. Due to the low abundance of this compound in the
tunicate, the structure responsible for the described cyto-
toxic activity would not be published until 1990 and pre-
clinical follow-up using natural material was not possible
[58, 59].

Early on it was hypothesized that 13 and its congeners
(16–18) shown in Fig. 4 were bacterial in origin as they
shared similarities to chemical scaffolds of previously
reported bacterial compounds including: saframycin A–C
(19–21) from Streptomyces lavendulae [60, 61], saframycin
Mx1 (22) from Myxococcus xanthus [62], and safracin A
and B (23, 24) from Pseudomonas fluorescens [63]. In fact,
safracin B (24) would later serve as the starting point in the
semi-synthesis of Yondelis® (13) for clinical use [64]. Stu-
dies investigating the microbiome of E. turbinate in the
Mediterranean [65] and Caribbean [66] found the γ-pro-
teobacterium, Ca. E. frumentensis was the dominant
member of the microbiome regardless of geographical
location, furthering the bacterial origin hypothesis for 13.
Then in 2011, the first confirmation of the bacterial origin of

13 was reported [67]. This study reported the assembly of a
35 kb contig from the tunicate metagenomic DNA consist-
ing of 25 genes from the core of the non-ribosomal peptide
synthase (NRPS) portion of the gene cluster associated with
13 production. During this work it was not possible to
assemble the entire 13 gene cluster, yet the GC content and
codon preference of the contig suggested that this NRPS
belonged to Ca. E. frumentensis [67]. In 2015, 13 was
concluded to be produced by the unculturable bacterial
endosymbiont Ca. E. frumentensis, obtained directly from
metagenomic DNA [2]. This study also identified that Ca.
E. frumentensis has an extremely reduced genome, indi-
cating it is in the later stages of symbiosis, and that direct
fermentation to supply 13 may not be possible. However,
scale-up production through semi-synthesis by PharmaMar
in partnership with Johnson & Johnson has provided a
sustainable source of the compound.

It is important to underscore several points contained in
the preceding narrative. To date there have been no mean-
ingful examples of mariculture as a cost-effective route for
sponge or tunicate-derived compound scale-up [68]. Alter-
natively, total synthesis of complex chemical scaffolds
possessing multiple chiral centers present in many bioactive
sponge and tunicate natural products has been successful in
moving compounds through preclinical evaluation (best
example is discodermolide [69]). This was a strategy used
to create eribulin mesylate (10), and as noted above semi-
synthesis continues to be successful in providing ET-743
(13). Not to be forgotten is that there is much interest in the
hypothesis that bacteria are the true producers of many
bioactive compounds in marine invertebrates, and as
understanding and tools continue to evolve there may be
practical alternatives to provide scale-up production of these
desired compounds [52, 53].

The advancement of next generation sequencing tech-
nology has allowed additional tunicate-derived natural
products to be concluded to be bacterial in origin and ten

Fig. 4 Molecular structures of ecteinascidins (ETs) from the tunicate Ecteinascidia turbinata vs. those from diverse bacteria possessing similar
structural features. I= invertebrate source; B= bacterial producer
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examples are shown in Fig. 5. In 2005, the cytotoxic
patellamides (25–27), originally isolated from Lissoclinum
patella [70], were determined to be biosynthesised by the
symbiotic cyanobacteria, Prochloron didemnid [71, 72].
Later, it was determined that the patellazoles (28–30),
cytotoxic polyketides originally isolated from L. patella in
1988 [73, 74], were in fact biosynthesized by the symbiotic
Candidatus Endolissoclinum faulkneri, a bacterium that
belongs to the phylum Proteobacteria [75]. Lastly, in 2017,
the biosynthetic gene cluster for the madelalides (31–34)
was identified [76]. These mitochondrial ATP synthase
inhibiting compounds, originally isolated from a Lissocli-
num sp. [77–79], were determined to be produced from the
symbiotic bacterium, Candidatus Didemnitutus mandela
that belongs to the phylum Verrucomicrobia.

The cytotoxic onnamide A (35) and psymberin (36)
shown in Fig. 6 were among the first sponge associated
natural products to be identified as bacterial in origin
through culture-independent methods [80–84]. The onna-
mides (35) were initially isolated from the sponge T.
swinhoei and psymberin (36) from the sponges Psammo-
cinia aff. bulbosa and Ircinia ramose [85–87]. However,
the discovery of the biosynthetic origin for these com-
pounds actually began with the structurally similar pederin
and its initial isolation source, the terrestrial beetle Paederus
fuscipes [88]. In 2004, the biosynthetic gene cluster for

pederin was identified from the metagenome of P. fuscipes
and determined that it originated from an uncultured
Pseudomonas-like bacterium [89, 90]. Using the knowledge
gained from the pederin biosynthetic gene cluster,
researchers were able to probe the metagenome of the T.
swinhoei and P. aff. bulbosa for homologous polyketide
synthase domains. In 2004, they identified part of the bio-
synthetic gene cluster for onnamide A (35) from an uni-
dentified bacterium in T. swinhoei [82], and in 2009 the
nearly complete biosynthetic gene cluster for psymberin
(36) was identified from an unknown bacterium in P. aff.
bulbosa [84]. It was not until 2014, that the identity of the
onnamide producing bacterium was determined to be the
symbiont “Candidatus Entotheonella factor.” This bacter-
ium would prove to be the source of many T. swinhoei
compounds including the structurally similar theopederin A
(37) [91]. However, mycalamide A (38) from a Mycale
sponge while similar in structure to 35–37 from the very
different sponge Theonella would be determined to origi-
nate from a completely different taxa of symbiont (to be
discussed below) [92, 93]. Unfortunately, to date the iden-
tity of the psymberin producing bacterium is still unknown.

Briefly discussed above is that the bacterial genus Can-
didatus Entotheonella detected in sponges has proved to be
a massive repository of biosynthetic richness, similar to
what has been previously observed in soil actinomycetes

Fig. 5 Structures of tunicate
(phylum Chordata) natural
products determined to be
bacterial in origin through
culture-independent methods.
I= invertebrate source;
B= bacterial producer
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(see section “Introduction”). Furthermore, these filamentous
bacteria belong to the unique phylum Tectomicrobia and
account for the majority of all known natural products
isolated from T. swinhoei. [91, 94–99]. Distinct species of
Candidatus Entotheonella have been shown to have sym-
biotic relationships with the different phenotypes of T.
swinhoei (Y= yellow interior, W=white interior), perhaps
accounting for the distinct chemotypes that have been pre-
viously observed in these sponges [100]. The Candidatus
Entotheonella factor is the symbiont of T. swinhoei Y as
shown in Fig. 7a and is responsible for the production of the
onnamides (35) [85], theopederins (37) [101], poly-
theonamides (39, 40) [102], keramamides (41–43) [103],
pseudotheonamides (44) [104], nazumamide A (45) [105],
and the cyclotheonamides (46, 47) [106]. Representatives
from each of these families of compounds are shown in
Fig. 7a. The bacterial genus Candidatus Entotheonella serta
is the symbiont of T. swinhoei W as shown in Fig. 7b and is
responsible for the production of the swinholides (48–50)
[107], misakinolides (51) [108], theopalauamide (52), and
theonellamides (53–60) [109]. Representatives from each of
these families of compounds are shown in Fig. 7b.

Although the chemically prolific bacterial genus Candi-
datus Entotheonella, detected in T. swinhoei sponges, are
the most well studied, it is also present in other sponge
genera discussed in Fig. 8. In 2014, the metagenome of the
sponge Discodermia calyx was mined for the biosynthetic
gene cluster responsible for the production of the highly
cytotoxic protein phosphatase inhibitor calyculin A (61)

[110, 111]. This research identified the complete biosyn-
thetic gene cluster and determined that it belonged to a
bacterium of the genus Candidatus Entotheonella. How-
ever, the team discovered a phosphotransferase tailoring
enzyme within the biosynthetic gene cluster suggesting a
diphosphate compound may be the true end product of the
biosynthetic pathway. Using a flash freeze-lyophilization
extraction method on freshly collected D. calyx, they were
able to isolate this new natural product, phosphocalyculin A
(62). Interestingly, 62 exhibited a greater than 1000-fold
reduction in cytotoxicity when compared with 61, sug-
gesting that 62 is in fact the protoxin that D. calyx stores to
avoid self-toxicity, but can quickly become the active agent
in response to environmental stimuli [111]. The research
discussed above highlights the powerful resource that
metagenomic analysis can provide in the understanding of
the chemical biology of sponge-derived natural products.

The preceding discussion illustrated that the bacterial
genus Candidatus Entotheonella can be considered to be a
“super-producer” of natural products. Culture-independent
methods have also enabled the discovery of other sponge
associated bacteria putatively responsible for the biosynth-
esis of complex natural products. As a striking example, in
2017, a metagenome exploration of Dysideidae sponges led
to the identification of the biosynthetic gene clusters
responsible for the production of cytotoxic polybrominated
diphenyl ethers (PBDEs) (63, 64) [112]. This extended
2014 findings on the biosynthetic gene clusters responsible
for the production of PBDEs from cultured γ-proteobacteria

Fig. 6 Structures of sponge-
derived (phylum Porifera)
polyketide natural products
determined to be bacterial in
origin through culture-
independent methods.
I= invertebrate source;
B= bacterial producer
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[113]. The next step was to close the loop by investigating
the biosynthetic origin of PBDEs which are ubiquitous in
Dysideidae sponges collected from coral reefs throughout
the Indo-Pacific [114]. Interestingly, γ-proteobacteria were
not concluded to be responsible for the production of
PBDEs in Dysideidae, but instead originate from the sponge
symbiotic cyanobacteria Hormoscilla spongeliae. Further-
more, the structural diversity of the PBDEs isolated from
different Dysideidae samples appears correlated to the
taxonomic clades of H. spongeliae strains [112].

The additional examples presented next, based on com-
pounds shown in Figs. 6 and 8, further underscore that the
biosynthetic production of complex sponge natural products
can occur from various taxa of bacterial symbionts. One
case involves mycalamide A (38) (Fig. 6) [115, 116],
initially discovered in the 1990s from Mycale hentscheli. In
2020, two different groups independently exploring the
metagenome [92, 93] of this sponge identified the biosyn-
thetic pathway for 38 in the genome of Candidatus Ento-
mycale ignis, a bacterium in the phylum Proteobacteria.
Similarly, via additional metagenome guided research onM.
hentscheli, the biosynthetic gene cluster for the translation
initiation inhibitor pateamine A (65) (Fig. 8) [117, 118] was
identified within the genome of Candidatus Patea custo-
diens, a bacterium in the phylum Kiritimatiellaeota. In
addition, the biosynthetic gene cluster responsible for the
production of the microtubule inhibitor peloruside A (66)
[119, 120] was also identified within the metagenome of M.
hentscheli. To date the taxonomy of the producing bacteria
involved in the production of 66 has not been identified.
Lastly, as part of the massive genetic diversity present in the
metagenome of M. hentscheli, a polytheonamide-like ribo-
somally synthesized and posttranslationally modified

peptide (similar in structure to 39 and 40) was identified
within the genome of Candidatus Caria hoplite, a bacterium
in the phylum Proteobacteria [93].

The preceding commentary dealing with bacterial bio-
synthetic gene clusters from invertebrate metagenomes,
especially sponge metagenomes, emphasizes the existence
of an immense range of natural product genetic diversity. It
is clear that future metagenomic-driven research on inver-
tebrates, such as those producing compounds shown in
Figs. 4–8, will further reveal undiscovered natural products
possessing inspirational structures.

The possible bacterial biosynthetic origin of
molecules isolated from sponges and
tunicates—the case made by analyzing
results of cultured biosynthetic production

In the section above, we discussed the structures of more
than 60 complex molecules directly isolated from sponges
and tunicates. The focus was on assessing their chemodi-
versity alongside insights of the bacterial-derived biosyn-
thetic machinery involved in their creation. In the future,
synthetic biology coupled with the functional biosynthetic
gene clusters identified in the metagenomes could provide a
supply of important natural products [121]. A current
roadblock is that in many cases the bacteria producing the
natural products are obligate symbionts and are incapable of
independent growth outside of their invertebrate host [122].
It is useful to explore situations where molecules analogous
to those produced by sponges and tunicates can be suc-
cessfully obtained by direct bacterial culturing in parallel
with actual compound isolation. We suggest that insights
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obtained from such a survey could provide answers to the
vexing question—what would it take to find new natural
product chemical space? On the one hand, it is relevant to
note that bacterial genome sequencing sometimes reveals
that an individual strain can contain the machinery to pro-
duce more than 20 distinct molecules. This has stimulated
many groups to contend that molecules encoded within the
genome of bacterial isolates that are not obtained from
culturing persist as “cryptic” entities whose pathways need
to be turned-on [123, 124].

The situation with didemnin B (67) (Fig. 9a) provides an
important case example. This compound was originally
isolated in 1978 from a Trididemnum tunicate and exhibits a
wide range of biological activity [125]. To date, nine con-
geners (didemnins A–E, G, X, Y, and nordidemnin B) have
been isolated from extracts of Trididemnum solidum, and 67
possesses the most potent biological activities [126]. Rela-
tively large amounts of didemnin B were isolated from the
tunicate and even larger amounts were obtained by total
synthesis. Unfortunately, high toxicity during Phase II
clinical trials led to termination of further trials on 67.
However, as discussed in Fig. 3 the analogue dehy-
drodidemnin B (15) successfully progressed through clin-
ical trials and is now approved for therapeutic use.
Especially important for this discussion was the serendipi-
tous isolation of 67 through laboratory culture of five strains
of Tistrella four mobilis, and one bauzanensis (see Fig. 9a)
[49, 50]. The unoptimized compound yields from the cul-
turing of two T. mobilis strains YIT 12409 and KA081020-
065 were modest and included 67 (YIT 12409= 3.2 mg/L;
KA081020-065= 0.2 mg/L) as well as nordidemnin B
(YIT 12409= 0.5 mg/L; KA081020-065= 0.1 mg/mL). A
detailed annotation of the biosynthetic gene cluster for 67 is
in hand for Tistrella sp. [50] and suggests that synthetic
biology coupled with semi-synthesis could provide an
alternative scale-up route to 67, which for now is obtained
by total synthesis.

There are four additional cases involving tunicate-
associated natural products that have been isolated from
cultured bacteria, and these are listed in Fig. 9a. For each, a
member of the compound family was identified from their
bacterial source prior to or simultaneously to being
observed from invertebrate source. Initially, lissoclinolide
(68) exhibiting antibiotic and antitumor activity was
obtained from the terrestrial Actinobacteria, Micro-
polyspora venezuelensis in 1969, then >20 years later 68
was re-isolated from the tunicate Lissoclinum patella [127–
129]. In 1976, the antibiotic enterocin (69) was identified
from a terrestrial soil Streptomyces and in 1996 there are
two reports of 69 being isolated, one from a marine
Streptomyces maritimus and the other from the tunicate
Didemnum [130–132]. Staurosporine (70) is a ubiquitous

alkaloid commonly isolated from various terrestrial and
marine Streptomyces and in 1992 was obtained from the
tunicate Eudistoma toealensis [133, 134]. Lastly, the cyto-
toxic haterumalides was simultaneously isolated in 1999
from three disparate sources: (1) haterumalide NA (71) from
Serratia marcescens, a terrestrial Proteobacteria, (2) 71
along with congeners haterumalides NB-NE (72–75) from
an Ircinia sponge, and (3) 76 from a Lissoclinum tunicate
[135–137].

There are a few cases where cultured bacterial isolates
contained compounds also isolated from sponges. Two of
these were discussed above and include nazumamide A (45)
and PBDEs (63, 64) (Figs. 7a and 8). The situation for 45 is
somewhat unique, this T. swinhoei sponge-derived com-
pound was identified by culture-independent methods from
in the genome of the T. swinhoei symbiont, Candidatus
Entotheonella [91, 105] and also from the culturing of the
actinomycete Salinispora pacifica [138]. The biosynthetic
machinery for the Dysideidae sponge-derived 63, 64 was
identified within the genome of cyanobacterial symbionts
H. spongeliae, in addition to PBDE’s isolated from other
cultured γ-proteobacteria [112, 113].

An additional 13 examples of sponge-derived com-
pounds also isolated from cultured bacteria, shown in
Fig. 9b, are discussed next. Toyocamycin (77) an antibiotic
nucleoside was first isolated in 1965 from a terrestrial
Streptomyces [139] and then decades later from the sponge
Jaspis johnstoni [140]. Bacteriohopanetetrol (78) has been
isolated from various taxa of bacteria, but its initial isolation
was from the Proteobacteria Acetobacter xylinum in 1976
[141] and in 2001 it was identified in high yields in the
sponge Plakortis simplex [142]. Manzamine A (79) exhibits
a wide range of biological activity and since 1986 has been
isolated in high yields from multiple taxa of sponges [143].
Later, it was isolated in miniscule and irreproducible yields
from an actinobacteria Micromonospora strain [144]. The
cytotoxic heterocycles bengamide E (80) and E′ (81),
initially isolated from a Jaspis sponge [145], were later
obtained in high and reproducible yields by culturing the
terrestrial Myxococcus virescens [146]. The antifungal
microsclerodermins were initially isolated from Micro-
scleroderma and Theonella sponges [147, 148] and in 2013
microsclerodermin D (82) and L (83) were isolated from
cultured Sorangium cellulosum and a Jahnella sp., bacteria
belonging to the phylum Proteobacteria [149]. Lastly, a
series of bromotyrosine-derived alkaloids isolated from
various sponge sources were obtained but not always
reproducibly from the Proteobacteria, Pseudovibrio deni-
trificans [150]. This included the cytotoxic fistularin-3 (84)
[151], aerothionin (85), hydroxyaerothionin (86) [152],
aplysinamisine II (87) [153], purealidin L (88) [154], and
homopurpuroceratic acid (89) [155].
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The possible bacterial biosynthetic origin of
molecules isolated from sponges and
tunicates—the case made by analyzing of
biosynthetic production from both culture-
dependent and independent schemes

Harnessing the power of metagenomics, synthetic biology,
and culturable isolates potentially provides a route to unlock
access to diverse chemical scaffolds often only seen in the
metagenomes of invertebrates. The following two cases
based on the compounds shown in Fig. 10 highlight dif-
ferent strategies in which these tools can assist in the dis-
covery of invertebrate-associated natural products.

The anti-HIV peptide divamide A (90) was isolated from
the ubiquitous tunicate, Didemnum molle, however, only
nanogram quantities were obtained hindering structural
elucidation. Metagenomic sequencing was used to predict
structural features and the symbiotic cyanobacteria Pro-
chloron didemnid was identified as the biosynthetic source
of this peptide. A proof-of-concept result was provided by
expressing the divamide pathway in E. coli which provided
better quantities of divamide A (90) and of 11 other con-
geners. This latter outcome facilitated structural elucidation
and biological screening [156].

Lobatamide A (91) was initially isolated from the tuni-
cate Aplidium lobatum in 1998. Over two decades later,
genome mining focused on identifying the products of
diverse oxidation and directed researchers to focus on the
polyketide synthases-associated flavoprotein mono-
oxygenases involved in the biosynthesis of oxygen con-
taining polyketides. The biosynthetic modules identified
from the plant-derived Proteobacteria, Gynuella sunshinyii
[157], were identified as responsible for the oxygen incor-
poration in the biosynthesis of 91, and also provided a
biosynthetic hypothesis for insertion of oxygen atoms into

the macrocyclic cores of sponge-derived salarin A and
pateamine A (65). A 5 L culture provided an unspecified
amount of 91 that was rigorously characterized by NMR
and MS.

Prospects to gather future understanding on
the involvement of bacteria in producing
meaningful metabolites from sponges and
tunicates

Scheme 1 and the accompanying annotations highlight
bacterial diversity associated with the holobiont of sponges
and tunicates. Also, the remarks in Figs. 3–10 summarize
bacterial taxa possessing prolific machinery for natural
product biosynthesis. Prior to the advancements and general
availability of next generation sequencing it was often
hypothesized, without buttressing experimental data, that
sponge and tunicate-associated natural products were bac-
terial in origin especially when similar chemical scaffolds
were isolated from both sources. This section focuses on
three sets of our favorite sponge natural products that have
similar scaffolds to the bacterial compounds as shown in
Fig. 11. Most importantly, current knowledge is incomplete
about the biosynthetic synergy between the invertebrates
and bacteria that produce this collection of compounds.
First, jasplakinolide (92) and its >20 congeners have been
isolated from at least three different taxa of sponges
[158, 159]. This family of compounds contain structural
similarities to the chondramides (93–96) produced by the
terrestrial bacteria Chondromyces crocatus, and the miur-
aenamides (97–99) produced by the marine bacteria Para-
liomyxa miuraensis [160, 161]. Second, salicylihalamide A
(100) isolated from the Haliclona sponge [162] is structu-
rally similar to apicularen A (101) produced by the

Fig. 10 Structures of tunicate
(phylum Chordata) natural
products determined to be
bacterial in origin through both
culture-independent and culture-
dependent methods.
I= invertebrate source;
B= bacterial producer
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terrestrial bacteria, Chondromyces robustus [163]. Last,
latrunculin A (102), initially isolated from the sponge
Latrunculia magnifica [164], shares structural similarities
with the epothilones (103, 104) produced by the terrestrial
bacteria, Sorangium cellulosum [165].

Conclusions

An overarching goal in this review has been to illustrate the
evolving overlap between the biosynthetic machinery of
marine-derived bacteria vs. that of the chemically prolific
sponges and tunicates. The ~28,500 marine natural products
identified by the end of 2016 constitute an enormous
assemblage of wide-ranging structural scaffolds. Annually,
more than 1000 new compounds are described from
Oceania and in 2018 the annual total tally was 1554 com-
pounds: 222 from sponges, 12 from tunicates, and 240 from
marine bacteria (with 69% of these from actinomycetes)
[81]. A striking theme contained in both recent research
papers and reviews outlines that several sponge/tunicate-
derived bioactive compounds are seemingly produced by
the action of the invertebrate microbiome.

Discussed in this review were examples describing bio-
synthetic outcomes producing an immense range of natural

product structural diversity, potentially arising through
synergy between gene clusters from sponge, tunicate, and
bacteria metagenomes. At the top of the list of examples in
the review are: (1) the molecular genetics-based discoveries
from the sponge T. swinhoei, rich with the unculturable
symbiont Candidatus Entotheonella, and (2) the use of
complete genome sequences from the actinomycete S. tro-
pica to direct further molecule discovery. These and many
other case examples presented in this review dramatically
illustrate the potential for selected sponges, tunicates, and
marine-derived bacteria to provide an inexhaustible supply
of novel natural products. Needed at this juncture is a firm
understanding of the true nature of sponge/tunicate-micro-
organism symbiont interactions whose machineries produce
novel metabolites in the natural environment that could
potentially be followed-up by carrying out the natural pro-
duct production in the laboratory. Such new understanding
will undoubtedly reveal fresh paradigms in marine natural
products research and this is underscored by the dramatic
statement in a 2020 review, “We continue to draw the
attention of readers to the recognition that a significant
number of natural product drugs/leads are actually produced
by microbes and/or microbial interactions with the host
from whence it was isolated” [24]. We predict that in the
future new insights will be obtained by focusing on parallel

N

H
N

NH
O O

O

O
O

CH3

HO H
NBr

Jasplakinolide (92)

I: Porifera, Jaspis splendens
Auletta cf. constricta, 
Hemiastrella minor

Chondramide A (93) R1 = OCH3, R = H
Chondramide B (94) R1 = OCH3, R = Cl
Chondramide C (95) R1 = H, R = H
Chondramide D (96) R1 = H, R = Cl

B: Proteobacteria, Chondromyces crocatus

N

H
N

NH
O O

O

O
O

CH3

O
H3C

OH

X

Miuraenamide A  (97) X = Br
Miuraenamide B  (98) X = I
Miuraenamide C  (99) X = Cl

B: Proteobacteria, Paraliomyxa miuraensis

Salicylihalamide A (100)

B: Porifera, Haliclona sp.

Apicularen A (101)

B: Proteobacteria, 
Chondromyces robustus

O

O

HN
S

O

O

OH

O

N
S

O

OH

OH

O

O
R

Latrunculin A (102)

I: Porifera,
Latrunculia magnifica

Epothilone A (103) R = H
Epothilone B (104) R = CH3

B: Proteobacteria, 
Sorangium cellulosum

N

H
N

NH
O O

O

O
O

CH3

HO H
NR2

OH

O

O

H
N

O
OH

OH

O

O

H
N

O

O

OH

vs.vs.R1

vs.

vs.

Fig. 11 Structures of sponge (phylum Porifera), tunicate (phylum Chordata), and bacterial metabolites with similar chemical scaffolds.
I= invertebrate source; B= bacterial producer

520 E. P. McCauley et al.



scaffolds from sponges and tunicates vs. those of marine-
derived bacteria. The toolbox for the future to discover new
paradigms in marine natural products research must com-
bine analytical spectrometry with the application of syn-
thetic biology, genome mining, experimental therapeutics,
and other transformative approaches.
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