Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Marine natural products targeting the eukaryotic cell membrane

Abstract

The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362–413.

    Article  CAS  PubMed  Google Scholar 

  2. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017;114:5601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCauley EP, Piña IC, Thompson AD, Bashir K, Weinberg M, Kurz SL, et al. Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates. J Antibiot. 2020;73:504–25.

    Article  CAS  Google Scholar 

  4. Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs. 2021;19:49.

  5. Lu WY, Li HJ, Li QY, Wu YC. Application of marine natural products in drug research. Bioorg Med Chem. 2021;35:116058.

    Article  CAS  PubMed  Google Scholar 

  6. Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta. 2016;1858:980–7.

    Article  CAS  PubMed  Google Scholar 

  7. Heidary M, Khosravi AD, Khoshnood S, Nasiri MJ, Soleimani S, Goudarzi M. Daptomycin. J Antimicrob Chemother. 2018;73:1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem. 2016;24:6253–68.

    Article  CAS  PubMed  Google Scholar 

  9. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov. 2010;9:719–27.

    Article  CAS  PubMed  Google Scholar 

  10. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11:272–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard”. Clin Infect Dis. 2003;37:415–25.

    Article  CAS  PubMed  Google Scholar 

  12. te Welscher YM, ten Napel HH, Balagué MM, Souza CM, Riezman H, de Kruijff B, et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem. 2008;283:6393–401.

    Article  Google Scholar 

  13. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–92.

    Article  PubMed  Google Scholar 

  14. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. Informatics and computational strategies for the study of lipids. Mol Biosyst. 2008;4:121–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA. 2009;106:2136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep. 2020;37:677–702.

    Article  CAS  PubMed  Google Scholar 

  17. Murata M, Sugiyama S, Matsuoka S, Matsumori N. Bioactive structure of membrane lipids and natural products elucidated by a chemistry-based approach. Chem Rec. 2015;15:675–90.

    Article  CAS  PubMed  Google Scholar 

  18. Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci. 2019;537:163–85.

    Article  CAS  PubMed  Google Scholar 

  19. Naito A, Matsumori N, Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta Gen Subj. 2018;1862:307–23.

    Article  CAS  PubMed  Google Scholar 

  20. Marquette A, Bechinger B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules. 2018;8:18.

    Article  PubMed Central  CAS  Google Scholar 

  21. Salvador-Reyes LA, Sneed J, Paul VJ, Luesch H. Amantelides A and B, polyhydroxylated macrolides with differential broad-spectrum cytotoxicity from a guamanian marine cyanobacterium. J Nat Prod. 2015;78:1957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shao CL, Linington RG, Balunas MJ, Centeno A, Boudreau P, Zhang C, et al. Bastimolide A, a potent antimalarial polyhydroxy macrolide from the marine cyanobacterium Okeania hirsuta. J Org Chem. 2015;80:7849–55.

    Article  CAS  PubMed  Google Scholar 

  23. Keller L, Siqueira-Neto JL, Souza JM, Eribez K, LaMonte GM, Smith JE, et al. Palstimolide A: a complex polyhydroxy macrolide with antiparasitic activity. Molecules. 2020;25:1604.

  24. MacMillan JB, Molinski TF. Caylobolide A, a unique 36-membered macrolactone from a Bahamian Lyngbya majuscula. Org Lett. 2002;4:1535–8.

    Article  CAS  PubMed  Google Scholar 

  25. Salvador LA, Paul VJ, Luesch H. Caylobolide B, a macrolactone from symplostatin 1-producing marine cyanobacteria Phormidium spp. from Florida. J Nat Prod. 2010;73:1606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shao CL, Mou XF, Cao F, Spadafora C, Glukhov E, Gerwick L, et al. Bastimolide B, an antimalarial 24-membered marine macrolide possessing a tert-butyl group. J Nat Prod. 2018;81:211–5.

    Article  CAS  PubMed  Google Scholar 

  27. Elsadek LA, Matthews JH, Nishimura S, Nakatani T, Ito A, Gu T, et al. Genomic and targeted approaches unveil the cell membrane as a major target of the antifungal cytotoxin amantelide A. Chembiochem. 2021;22:1790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Espiritu RA, Matsumori N, Murata M, Nishimura S, Kakeya H, Matsunaga S, et al. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance. Biochemistry. 2013;52:2410–8.

    Article  CAS  PubMed  Google Scholar 

  29. Espiritu RA, Matsumori N, Tsuda M, Murata M. Direct and stereospecific interaction of amphidinol 3 with sterol in lipid bilayers. Biochemistry. 2014;53:3287–93.

    Article  CAS  PubMed  Google Scholar 

  30. Houdai T, Matsuoka S, Matsumori N, Murata M. Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate. Biochim Biophys Acta. 2004;1667:91–100.

    Article  CAS  PubMed  Google Scholar 

  31. Satake M, Murata M, Yasumoto T, Fujita T, Naoki H. Amphidinol, a polyhydroxypolyene antifungal agent with an unprecedented structure, from a marine dinoflagellate, Amphidinium-klebsii. J Am Chem Soc. 1991;113:9859–61.

    Article  CAS  Google Scholar 

  32. Paul GK, Matsumori N, Murata M, Tachibana K. Isolation and chemical-structure of amphidinol-2, a potent hemolytic compound from marine dinoflagellate Amphidinium-klebsii. Tetrahedron Lett. 1995;36:6279–82.

    Article  CAS  Google Scholar 

  33. Paul GK, Matsumori N, Konoki K, Murata M, Tachibana K. Chemical structures of amphidinols 5 and 6 isolated from marine dinoflagellate Amphidinium klebsii and their cholesterol-dependent membrane disruption. Mar Biotechnol. 1997;5:124–8.

    CAS  Google Scholar 

  34. Morsy N, Matsuoka S, Houdai T, Matsumori N, Adachi S, Murata M, et al. Isolation and structure elucidation of a new amphidinol with a truncated polyhydroxyl chain from Amphidinium klebsii. Tetrahedron 2005;61:8606–10.

    Article  CAS  Google Scholar 

  35. Echigoya R, Rhodes L, Oshima Y, Satake M. The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae. 2005;4:383–9.

    Article  CAS  Google Scholar 

  36. Morsy N, Houdai T, Matsuoka S, Matsumori N, Adachi S, Oishi T, et al. Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities. Bioorg Med Chem. 2006;14:6548–54.

    Article  CAS  PubMed  Google Scholar 

  37. Meng Y, Van Wagoner RM, Misner I, Tomas C, Wright JL. Structure and biosynthesis of amphidinol 17, a hemolytic compound from Amphidinium carterae. J Nat Prod. 2010;73:409–15.

    Article  CAS  PubMed  Google Scholar 

  38. Nuzzo G, Cutignano A, Sardo A, Fontana A. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. J Nat Prod. 2014;77:1524–7.

    Article  CAS  PubMed  Google Scholar 

  39. Cutignano A, Nuzzo G, Sardo A, Fontana A. The missing piece in biosynthesis of amphidinols: first evidence of glycolate as a starter unit in new polyketides from Amphidinium carterae. Mar Drugs. 2017;15:157.

    Article  PubMed Central  CAS  Google Scholar 

  40. Satake M, Cornelio K, Hanashima S, Malabed R, Murata M, Matsumori N, et al. Structures of the largest amphidinol homologues from the dinoflagellate Amphidinium carterae and structure-activity relationships. J Nat Prod. 2017;80:2883–8.

    Article  CAS  PubMed  Google Scholar 

  41. Martínez KA, Lauritano C, Druka D, Romano G, Grohmann T, Jaspars M, et al. Amphidinol 22, a new cytotoxic and antifungal amphidinol from the dinoflagellate Amphidinium carterae. Mar Drugs. 2019;17:E385.

    Article  PubMed  CAS  Google Scholar 

  42. Paul GK, Matsumori N, Konoki K, Sasaki M, Murata M, Tachibana K. Harmful and toxic algal blooms. Yasumoto T, Oshima Y, Fukuyo Y, editors. I.O.C. of UNESCO: Paris; 1996 p. 503–506.

  43. Huang SJ, Kuo CM, Lin YC, Chen YM, Lu CK. Carteraol E, a potent polyhydroxyl ichthyotoxin from the dinoflagellate Amphidinium carterae. Tetrahedron Lett. 2009;50:2512–5.

    Article  CAS  Google Scholar 

  44. Huang XC, Zhao D, Guo YW, Wu HM, Lin LP, Wang ZH, et al. Lingshuiol, a novel polyhydroxyl compound with strongly cytotoxic activity from the marine dinoflagellate Amphidinium sp. Bioorg Med Chem Lett. 2004;14:3117–20.

    CAS  PubMed  Google Scholar 

  45. Huang XC, Zhao D, Guo YW, Wu HM, Trivellone E, Cimino G. Lingshuiols A and B, two new polyhydroxy compounds from the Chinese marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2004;45:5501–4.

    Article  CAS  Google Scholar 

  46. Washida K, Koyama T, Yamada K, Kita M, Uemura D. Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2006;47:2521–5.

    Article  CAS  Google Scholar 

  47. Hanif N, Ohno O, Kitamura M, Yamada K, Uemura D. Symbiopolyol, a VCAM-1 inhibitor from a symbiotic dinoflagellate of the jellyfish Mastigias papua. J Nat Prod. 2010;73:1318–22.

    Article  CAS  PubMed  Google Scholar 

  48. Kubota T, Takahashi A, Tsuda M, Kobayashi J. Luteophanol D, new polyhydroxyl metabolite from marine dinoflagellate Amphidinium sp. Mar Drugs. 2005;3:113–8.

    Article  CAS  PubMed Central  Google Scholar 

  49. Inuzuka T, Yamada K, Uemura D. Amdigenols E and G, long carbon-chain polyol compounds, isolated from the marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2014;55:6319–23.

    Article  CAS  Google Scholar 

  50. Murata M, Matsuoka S, Matsumori N, Paul GK, Tachibana K. Absolute configuration of amphidinol 3, the first complete structure determination from amphidinol homologues: Application of a new configuration analysis based on carbon-hydrogen spin-coupling constants. J Am Chem Soc. 1999;121:870–1.

    Article  CAS  Google Scholar 

  51. Wakamiya Y, Ebine M, Murayama M, Omizu H, Matsumori N, Murata M, et al. Synthesis and stereochemical revision of the C31-C67 fragment of Amphidinol 3. Angew Chem Int Ed. 2018;57:6060–4.

    Article  CAS  Google Scholar 

  52. Wakamiya Y, Ebine M, Matsumori N, Oishi T. Total synthesis of Amphidinol 3: a general strategy for synthesizing Amphidinol analogues and structure-activity relationship study. J Am Chem Soc. 2020;142:3472–8.

    Article  CAS  PubMed  Google Scholar 

  53. Morsy N, Houdai T, Konoki K, Matsumori N, Oishi T, Murata M. Effects of lipid constituents on membrane-permeabilizing activity of amphidinols. Bioorg Med Chem. 2008;16:3084–90.

    Article  CAS  PubMed  Google Scholar 

  54. Iwamoto M, Sumino A, Shimada E, Kinoshita M, Matsumori N, Oiki S. Channel formation and membrane deformation via sterol-aided polymorphism of Amphidinol 3. Sci Rep. 2017;7:10782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Houdai T, Matsuoka S, Morsy N, Matsumori N, Satake M, Murata M. Hairpin conformation of amphidinols possibly accounting for potent membrane permeabilizing activities. Tetrahedron. 2005;61:2795–802.

    Article  CAS  Google Scholar 

  56. Houdai T, Matsumori N, Murata M. Structure of membrane-bound Amphidinol 3 in isotropic small bicelles. Org Lett. 2008;10:4191–4.

    Article  CAS  PubMed  Google Scholar 

  57. Hieda M, Sorada A, Kinoshita M, Matsumori N. Amphidinol 3 preferentially binds to cholesterol in disordered domains and disrupts membrane phase separation. Biochem Biophys Rep. 2021;26:100941.

    PubMed  PubMed Central  Google Scholar 

  58. Kojiri K, Nakajima S, Suzuki H, Kondo H, Suda H. A new macrocyclic lactam antibiotic, BE-14106. I. Taxonomy, isolation, biological activity and structural elucidation. J Antibiot. 1992;45:868–74.

    Article  CAS  Google Scholar 

  59. Fujita K, Sugiyama R, Nishimura S, Ishikawa N, Arai MA, Ishibashi M, et al. Stereochemical assignment and biological evaluation of BE-14106 unveils the importance of one acetate unit for the antifungal activity of polyene macrolactams. J Nat Prod. 2016;79:1877–80.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi I, Oda Y, Nishiie Y, Ochiai K, Mizukami T. GT32-B new 20-membered macrocyclic lactam antibiotic. J Antibiot. 1997;50:186–8.

    Article  CAS  Google Scholar 

  61. Jørgensen H, Degnes KF, Dikiy A, Fjaervik E, Klinkenberg G, Zotchev SB. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl Environ Microbiol. 2010;76:283–93.

    Article  PubMed  CAS  Google Scholar 

  62. Raju R, Piggott AM, Conte MM, Capon RJ. Heronamides A-C, new polyketide macrolactams from an Australian marine-derived Streptomyces sp. A biosynthetic case for synchronized tandem electrocyclization. Org Biomol Chem. 2010;8:4682–9.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang W, Li S, Zhu Y, Chen Y, Chen Y, Zhang H, et al. Heronamides D-F, polyketide macrolactams from the deep-sea-derived Streptomyces sp. SCSIO 03032. J Nat Prod. 2014;77:388–91.

    Article  PubMed  CAS  Google Scholar 

  64. Sugiyama R, Nishimura S, Matsumori N, Tsunematsu Y, Hattori A, Kakeya H. Structure and biological activity of 8-deoxyheronamide C from a marine-derived Streptomyces sp.: heronamides target saturated hydrocarbon chains in lipid membranes. J Am Chem Soc. 2014;136:5209–12.

    Article  CAS  PubMed  Google Scholar 

  65. Sugiyama R, Nishimura S, Kakeya H. Stereochemical reassignment of heronamide A, a polyketide macrolactam from Streptomyces sp. Tetrahedron Lett. 2013;54:1531–3.

    Article  CAS  Google Scholar 

  66. Kanoh N, Itoh S, Fujita K, Sakanishi K, Sugiyama R, Terajima Y, et al. Asymmetric total synthesis of heronamides A-C: stereochemical confirmation and impact of long-range stereochemical communication on the biological activity. Chemistry. 2016;22:8586–95.

    Article  CAS  PubMed  Google Scholar 

  67. Yu P, Patel A, Houk KN. Transannular [6 + 4] and ambimodal cycloaddition in the biosynthesis of heronamide A. J Am Chem Soc. 2015;137:13518–23.

    Article  CAS  PubMed  Google Scholar 

  68. Booth TJ, Alt S, Capon RJ, Wilkinson B. Synchronous intramolecular cycloadditions of the polyene macrolactam polyketide heronamide C. Chem Commun. 2016;52:6383–6.

    Article  CAS  Google Scholar 

  69. Ding N, Han L, Jiang Y, Li G, Zheng Z, Cao B, et al. Heronamides G-L, polyene macrolactams from Streptomyces niveus. RSC Adv. 2018;8:17121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang C, Wang X, Chen Y, He Z, Yu P, Liang Y. Dynamical trajectory study of the transannular [6+4] and Ambimodal cycloaddition in the biosynthesis of heronamides. J Org Chem. 2020;85:9440–5.

    Article  CAS  PubMed  Google Scholar 

  71. Jørgensen H, Degnes KF, Sletta H, Fjaervik E, Dikiy A, Herfindal L, et al. Biosynthesis of macrolactam BE-14106 involves two distinct PKS systems and amino acid processing enzymes for generation of the aminoacyl starter unit. Chem Biol. 2009;16:1109–21.

    Article  PubMed  CAS  Google Scholar 

  72. Hampsey M. A review of phenotypes in Saccharomyces cerevisiae. Yeast. 1997;13:1099–133.

    Article  CAS  PubMed  Google Scholar 

  73. Iwaki T, Iefuji H, Hiraga Y, Hosomi A, Morita T, Giga-Hama Y, et al. Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe. Microbiology. 2008;154:830–41.

    Article  CAS  PubMed  Google Scholar 

  74. Simons K, Vaz WL. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269–95.

    Article  CAS  PubMed  Google Scholar 

  75. Huang J, Feigenson GW. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J. 1999;76:2142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mesmin B, Maxfield FR. Intracellular sterol dynamics. Biochim Biophys Acta. 2009;1791:636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McConnell HM, Radhakrishnan A. Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta. 2003;1610:159–73.

    Article  CAS  PubMed  Google Scholar 

  78. Sakanishi K, Itoh S, Sugiyama R, Nishimura S, Kakeya H, Iwabuchi Y, et al. Total synthesis of the proposed structure of heronamide C. Eur J Org Chem. 2014;2014:1376–80.

    Article  CAS  Google Scholar 

  79. Cortes JC, Ishiguro J, Duran A, Ribas JC. Localization of the (1,3)β-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J Cell Sci. 2002;115:4081–96.

    Article  CAS  PubMed  Google Scholar 

  80. Arellano M, Duran A, Perez P. Rho 1 GTPase activates the (1-3)beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J. 1996;15:4584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feoktistova A, Magnelli P, Abeijon C, Perez P, Lester RL, Dickson RC, et al. Coordination between fission yeast glucan formation and growth requires a sphingolipase activity. Genetics. 2001;158:1397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishimura S, Arita Y, Honda M, Iwamoto K, Matsuyama A, Shirai A, et al. Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling. Nat Chem Biol. 2010;6:519–26.

    Article  CAS  PubMed  Google Scholar 

  83. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.

    Article  CAS  PubMed  Google Scholar 

  84. Liu J, Tang X, Wang H, Oliferenko S, Balasubramanian MK. The localization of the integral membrane protein Cps1p to the cell division site is dependent on the actomyosin ring and the septation-inducing network in Schizosaccharomyces pombe. Mol Biol Cell. 2002;13:989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ford PW, Gustafson KR, McKee TC, Shigematsu N, Maurizi LK, Pannell LK, et al. Papuamides A−D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Chem Soc. 1999;121:5899–909.

    Article  CAS  Google Scholar 

  86. Prasad P, Aalbersberg W, Feussner KD, Van Wagoner RM. Papuamides E and F, cytotoxic depsipeptides from the marine sponge Melophlus sp. Tetrahedron. 2011;67:8529–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA. Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod. 2007;70:1753–60.

    Article  CAS  PubMed  Google Scholar 

  88. Lu Z, Van Wagoner RM, Harper MK, Baker HL, Hooper JN, Bewley CA, et al. Mirabamides E-H, HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J Nat Prod. 2011;74:185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oku N, Krishnamoorthy R, Benson AG, Ferguson RL, Lipton MA, Phillips LR, et al. Complete stereochemistry of neamphamide A and absolute configuration of the beta-methoxytyrosine residue in papuamide B. J Org Chem. 2005;70:6842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Makino K, Nagata E, Hamada Y. Synthesis of tripeptide hydrolysate from papuamide A: determination of absolute stereostructure of beta-methoxytyrosine. Tetrahedron Lett. 2005;46:6827–30.

    Article  CAS  Google Scholar 

  91. Xie W, Ding D, Zi W, Li G, Ma D. Total synthesis and structure assignment of papuamide B, a potent marine cyclodepsipeptide with anti-HIV properties. Angew Chem Int Ed. 2008;47:2844–8.

    Article  CAS  Google Scholar 

  92. Cassilly CD, Maddox MM, Cherian PT, Bowling JJ, Hamann MT, Lee RE, et al. SB-224289 antagonizes the antifungal mechanism of the marine depsipeptide papuamide A. PloS ONE. 2016;11:e0154932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006;126:611–25.

    Article  CAS  PubMed  Google Scholar 

  94. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, et al. Global mapping of the yeast genetic interaction network. Science. 2004;303:808–13.

    Article  CAS  PubMed  Google Scholar 

  96. Atkinson KD, Jensen B, Kolat AI, Storm EM, Henry SA, Fogel S. Yeast mutants auxotrophic for choline or ethanolamine. J Bacteriol. 1980;141:558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Atkinson K, Fogel S, Henry SA. Yeast mutant defective in phosphatidylserine synthesis. J Biol Chem. 1980;255:6653–61.

    Article  CAS  PubMed  Google Scholar 

  98. Kiyono K, Miura K, Kushima Y, Hikiji T, Fukushima M, Shibuya I, et al. Primary structure and product characterization of the Saccharomyces cerevisiae CHO1 gene that encodes phosphatidylserine synthase. J Biochem. 1987;102:1089–100.

    Article  CAS  PubMed  Google Scholar 

  99. Takar M, Wu Y, Graham TR. The essential Neo1 protein from budding yeast plays a role in establishing aminophospholipid asymmetry of the plasma membrane. J Biol Chem. 2016;291:15727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, et al. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic. 2006;7:1503–17.

    Article  CAS  PubMed  Google Scholar 

  101. Kishimoto T, Mioka T, Itoh E, Williams DE, Andersen RJ, Tanaka K. Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the plasma membrane. Mol Biol Cell. 2021;32:1374–1392.

  102. Mioka T, Fujimura-Kamada K, Mizugaki N, Kishimoto T, Sano T, Nunome H, et al. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane. Mol Biol Cell. 2018;29:1203–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Curto MÁ, Sharifmoghadam MR, Calpena E, De León N, Hoya M, Doncel C, et al. Membrane organization and cell fusion during mating in fission yeast requires multipass membrane protein Prm1. Genetics. 2014;196:1059–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen YL, Montedonico AE, Kauffman S, Dunlap JR, Menn FM, Reynolds TB. Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol. 2010;75:1112–32.

    Article  CAS  PubMed  Google Scholar 

  105. Andjelic CD, Planelles V, Barrows LR. Characterizing the anti-HIV activity of papuamide A. Mar Drugs. 2008;6:528–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bahrami Y, Franco CM. Acetylated triterpene glycosides and their biological activity from holothuroidea reported in the past six decades. Mar Drugs. 2016;14:147.

    Article  PubMed Central  CAS  Google Scholar 

  107. Xiao G, Shao X, Zhu D, Yu B. Chemical synthesis of marine saponins. Nat Prod Rep. 2019;36:769–87.

    Article  CAS  PubMed  Google Scholar 

  108. Vincken JP, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 2007;68:275–97.

    Article  CAS  PubMed  Google Scholar 

  109. Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011;72:435–57.

    Article  CAS  PubMed  Google Scholar 

  110. Shimada S. Antifungal steroid glycoside from sea cucumber. Science. 1969;163:1462.

    Article  CAS  PubMed  Google Scholar 

  111. Kitagawa I, Yamanaka H, Kobayashi M, Nishino T, Yosioka I, Sugawara T. Saponin and Sapogenol .27. revised structures of holotoxin a and holotoxin-B, 2 antifungal oligoglycosides from the sea-cucumber stichopus-japonicus selenka. Chem Pharm Bull. 1978;26:3722–31.

    Article  CAS  Google Scholar 

  112. Kitagawa I, Sugawara T, Yosioka I. Saponin and sapogenol. XV. Antifungal glycosides from the sea cucumber Stichopus japonicus selenka. (2). Structures of holotoxin A and holotoxin B. Chem Pharm Bull. 1976;24:275–84.

    Article  CAS  Google Scholar 

  113. Van Dyck S, Caulier G, Todesco M, Gerbaux P, Fournier I, Wisztorski M, et al. The triterpene glycosides of Holothuria forskali: usefulness and efficiency as a chemical defense mechanism against predatory fish. J Exp Biol. 2011;214:1347–56.

    Article  PubMed  CAS  Google Scholar 

  114. Caulier G, Flammang P, Gerbaux P, Eeckhaut I. When a repellent becomes an attractant: harmful saponins are kairomones attracting the symbiotic Harlequin crab. Sci Rep. 2013;3:2639.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Frenkel N, Makky A, Sudji IR, Wink M, Tanaka M. Mechanistic investigation of interactions between steroidal saponin digitonin and cell membrane models. J Phys Chem B. 2014;118:14632–9.

    Article  CAS  PubMed  Google Scholar 

  116. Keukens EA, de Vrije T, Fabrie CH, Demel RA, Jongen WM, de Kruijff B. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta. 1992;1110:127–36.

    Article  CAS  PubMed  Google Scholar 

  117. Keukens EA, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta. 1995;1240:216–28.

    Article  PubMed  Google Scholar 

  118. Kitagawa I, Kobayashi M, Inamoto T, Yasuzawa T, Kyogoku Y. The structures of 6 antifungal oligoglycosides, stichloroside-a1, stichloroside-a2, stichloroside-B1, stichloroside-B2, stichloroside-C1, and stichloroside-C2, from the sea-cucumber Stichopus chloronotus (Brandt). Chem Pharm Bull. 1981;29:2387–91.

    Article  CAS  Google Scholar 

  119. Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, Natarajan P, et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol. 2009;27:369–77.

    Article  CAS  PubMed  Google Scholar 

  120. Yibmantasiri P, Leahy DC, Busby BP, Angermayr SA, Sorgo AG, Boeger K, et al. Molecular basis for fungicidal action of neothyonidioside, a triterpene glycoside from the sea cucumber, Australostichopus mollis. Mol Biosyst. 2012;8:902–12.

    Article  CAS  PubMed  Google Scholar 

  121. Gorshkova IA, Kalinin VI, Gorshkov BA, Stonik VA. Two different modes of inhibition of the rat brain Na+, K(+)-ATPase by triterpene glycosides, psolusosides A and B from the holothurian Psolus fabricii. Comp Biochem Physiol C Pharm Toxicol Endocrinol. 1999;122:101–8.

    Article  CAS  Google Scholar 

  122. Silchenko AS, Kalinovsky AI, Avilov SA, Kalinin VI, Andrijaschenko PV, Dmitrenok PS, et al. Structures and bioactivities of six new triterpene glycosides, psolusosides E, F, G, H, H1, and I and the corrected structure of psolusoside B from the sea cucumber psolus fabricii. Mar Drugs. 2019;17:358.

    Article  CAS  PubMed Central  Google Scholar 

  123. Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr., McCrimmon D, et al. Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA. 1993;90:1354–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wehrli SL, Moore KS, Roder H, Durell S, Zasloff M. Structure of the novel steroidal antibiotic squalamine determined by two-dimensional NMR spectroscopy. Steroids. 1993;58:370–8.

    Article  CAS  PubMed  Google Scholar 

  125. Yun SS, Li W. Identification of squalamine in the plasma membrane of white blood cells in the sea lamprey, Petromyzon marinus. J Lipid Res. 2007;48:2579–86.

    Article  CAS  PubMed  Google Scholar 

  126. Moriarty RM, Tuladhar SM, Guo L, Wehrli S. Synthesis of squalamine—a steroidal antibiotic from the shark. Tetrahedron Lett. 1994;35:8103–6.

    Article  CAS  Google Scholar 

  127. Zasloff M, Adams AP, Beckerman B, Campbell A, Han Z, Luijten E, et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc Natl Acad Sci USA. 2011;108:15978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Márquez-Garbán DC, Gorrín-Rivas M, Chen HW, Sterling C Jr., Elashoff D, Hamilton N, et al. Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer Lett. 2019;449:66–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Perni M, Galvagnion C, Maltsev A, Meisl G, Müller MB, Challa PK, et al. A natural product inhibits the initiation of alpha-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci USA. 2017;114:E1009–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Selinsky BS, Zhou Z, Fojtik KG, Jones SR, Dollahon NR, Shinnar AE. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles. Biochim Biophys Acta. 1998;1370:218–34.

    Article  CAS  PubMed  Google Scholar 

  131. Selinsky BS, Smith R, Frangiosi A, Vonbaur B, Pedersen L. Squalamine is not a proton ionophore. Biochim Biophys Acta. 2000;1464:135–41.

    Article  CAS  PubMed  Google Scholar 

  132. Galvagnion C, Buell AK, Meisl G, Michaels TC, Vendruscolo M, Knowles TP, et al. Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol. 2015;11:229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Matsunaga S, Fusetani N, Hashimoto K, Walchli M. Bioactive marine metabolites .26. theonellamide-F—a novel antifungal bicyclic peptide from a marine sponge Theonella sp. J Am Chem Soc. 1989;111:2582–8.

    Article  CAS  Google Scholar 

  134. Matsunaga S, Fusetani N. Theonellamides A-E, cytotoxic bicyclic peptides, from a marine sponge Theonella sp. J Org Chem. 1995;60:1177–81.

    Article  CAS  Google Scholar 

  135. Youssef DT, Shaala LA, Mohamed GA, Badr JM, Bamanie FH, Ibrahim SR. Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar Drugs. 2014;12:1911–23.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Fukuhara K, Takada K, Watanabe R, Suzuki T, Okada S, Matsunaga S. Colony-wise analysis of a theonella swinhoei marine sponge with a yellow interior permitted the isolation of theonellamide I. J Nat Prod. 2018;81:2595–9.

    Article  CAS  PubMed  Google Scholar 

  137. Bewley CA, Faulkner DJ. Theonegramide, an antifungal glycopeptide from the Philippine lithistid sponge Theonella swinhoei. J Org Chem. 1994;59:4849–52.

    Article  CAS  Google Scholar 

  138. Schmidt EW, Bewley CA, Faulkner DJ. Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J Org Chem. 1998;63:1254–8.

    Article  CAS  Google Scholar 

  139. Bewley CA, Holland ND, Faulkner DJ. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia. 1996;52:716–22.

    Article  CAS  PubMed  Google Scholar 

  140. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol. 2000;136:969–77.

    Article  CAS  Google Scholar 

  141. Mori T, Cahn J, Wilson MC, Meoded RA, Wiebach V, Martinez A, et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc Natl Acad Sci USA. 2018;115:1718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wada S, Matsunaga S, Fusetani N, Watabe S. Theonellamide F, a bicyclic peptide marine toxin, induces formation of vacuoles in 3Y1 rat embryonic fibroblast. Mar Biotechnol (NY). 1999;1:337–41.

    Article  CAS  Google Scholar 

  143. Wada S, Matsunaga S, Fusetani N, Watabe S. Interaction of cytotoxic bicyclic peptides, theonellamides A and F, with glutamate dehydrogenase and 17β-hydroxysteroid dehydrogenase IV. Mar Biotechnol. 2000;2:285–92.

    Article  CAS  Google Scholar 

  144. Wada S, Kantha S, Yamashita T, Matsunaga S, Fusetani N, Watabe S. Accumulation of H+ in vacuoles induced by a marine peptide toxin, theonellamide F, in rat embryonic 3Y1 fibroblasts. Mar Biotechnol. 2002;4:571–82.

    Article  CAS  Google Scholar 

  145. Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, Sekido S, et al. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol. 2006;24:841–7.

    Article  CAS  PubMed  Google Scholar 

  146. Shirai A, Matsuyama A, Yashiroda Y, Hashimoto A, Kawamura Y, Arai R, et al. Global analysis of gel mobility of proteins and its use in target identification. J Biol Chem. 2008;283:10745–52.

    Article  CAS  PubMed  Google Scholar 

  147. Cornelio K, Espiritu RA, Hanashima S, Todokoro Y, Malabed R, Kinoshita M, et al. Theonellamide A, a marine-sponge-derived bicyclic peptide, binds to cholesterol in aqueous DMSO: Solution NMR-based analysis of peptide-sterol interactions using hydroxylated sterol. Biochim Biophys Acta Biomembr. 2019;1861:228–35.

    Article  CAS  PubMed  Google Scholar 

  148. Espiritu RA, Cornelio K, Kinoshita M, Matsumori N, Murata M, Nishimura S, et al. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores. Biochim Biophys Acta. 2016;1858:1373–9.

    Article  CAS  PubMed  Google Scholar 

  149. Cornelio K, Espiritu RA, Todokoro Y, Hanashima S, Kinoshita M, Matsumori N, et al. Sterol-dependent membrane association of the marine sponge-derived bicyclic peptide Theonellamide A as examined by (1)H NMR. Bioorg Med Chem. 2016;24:5235–42.

    Article  CAS  PubMed  Google Scholar 

  150. Arita Y, Nishimura S, Ishitsuka R, Kishimoto T, Ikenouchi J, Ishii K, et al. Targeting cholesterol in a liquid-disordered environment by theonellamides modulates cell membrane order and cell shape. Chem Biol. 2015;22:604–10.

    Article  CAS  PubMed  Google Scholar 

  151. Nishimura S, Tokukura M, Ochi J, Yoshida M, Kakeya H. Balance between exocytosis and endocytosis determines the efficacy of sterol-targeting antibiotics. Chem Biol. 2014;21:1690–9.

    Article  CAS  PubMed  Google Scholar 

  152. Nishimura S, Ishii K, Iwamoto K, Arita Y, Matsunaga S, Ohno-Iwashita Y, et al. Visualization of sterol-rich membrane domains with fluorescently-labeled theonellamides. PloS ONE. 2013;8:e83716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Takahashi S, Homma K, Zhou Y, Nishimura S, Duan C, Chen J, et al. Susceptibility of outer hair cells to cholesterol chelator 2-hydroxypropyl-beta-cyclodextrine is prestin-dependent. Sci Rep. 2016;6:21973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Giampietro C, Lionetti MC, Costantini G, Mutti F, Zapperi S, La Porta CA. Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep. 2017;7:43669.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Xiong Q, Lin M, Huang W, Rikihisa Y. Infection by anaplasma phagocytophilum requires recruitment of low-density lipoprotein cholesterol by flotillins. mBio 2019;10:e02783–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. eLife. 2016;5:e17180.

    Article  PubMed  PubMed Central  Google Scholar 

  157. van den Boomen DJH, Sienkiewicz A, Berlin I, Jongsma M, van Elsland DM, Luzio JP, et al. A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat Commun. 2020;11:5559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta. 2016;1861:812–29.

    Article  CAS  PubMed  Google Scholar 

  159. Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell Biochem. 2010;51:597–621.

    Article  CAS  PubMed  Google Scholar 

  160. Hayashi T, Tsuchikawa H, Umegawa Y, Murata M. Small structural alterations greatly influence the membrane affinity of lipophilic ligands: Membrane interactions of bafilomycin A1 and its desmethyl derivative bearing (19)F-labeling. Bioorg Med Chem. 2019;27:1677–82.

    Article  CAS  PubMed  Google Scholar 

  161. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang R, Li X, Zhang X, Qin H, Xiao W. Machine learning approaches for elucidating the biological effects of natural products. Nat Prod Rep. 2021;38:346–61.

    Article  CAS  PubMed  Google Scholar 

  163. Andrusiak K, Piotrowski JS, Boone C. Chemical-genomic profiling: systematic analysis of the cellular targets of bioactive molecules. Bioorg Med Chem. 2012;20:1952–60.

    Article  CAS  PubMed  Google Scholar 

  164. Onaka H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiot. 2017;70:865–70.

    Article  CAS  Google Scholar 

  165. Zarins-Tutt JS, Barberi TT, Gao H, Mearns-Spragg A, Zhang L, Newman DJ, et al. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat Prod Rep. 2016;33:54–72.

    Article  CAS  PubMed  Google Scholar 

  166. van Santen JA, Kautsar SA, Medema MH, Linington RG. Microbial natural product databases: moving forward in the multi-omics era. Nat Prod Rep. 2021;38:264–78.

    Article  PubMed  Google Scholar 

  167. Sugiyama R, Nakatani T, Nishimura S, Takenaka K, Ozaki T, Asamizu S, et al. Chemical interactions of cryptic actinomycete metabolite 5-Alkyl-1,2,3,4-tetrahydroquinolines through aggregate formation. Angew Chem Int Ed. 2019;58:13486–91.

    Article  CAS  Google Scholar 

  168. Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org Lett. 2015;17:1918–21.

    Article  CAS  PubMed  Google Scholar 

  169. Fujita K, Ikuta M, Nishimura S, Sugiyama R, Yoshimura A, Kakeya H. Amphiol, an antifungal fungal pigment from Pseudogymnoascus sp. PF1464. J Nat Prod. 2021;84:986–92.

    Article  CAS  PubMed  Google Scholar 

  170. Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem. 1988;263:16709–13.

    Article  CAS  PubMed  Google Scholar 

  171. Vernen F, Craik DJ, Lawrence N, Troeira Henriques S. Cyclic analogues of horseshoe crab peptide tachyplesin I with anticancer and cell penetrating properties. ACS Chem Biol. 2019;14:2895–908.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Profs Minoru Yoshida (RIKEN; Univ. Tokyo) and Hideaki Kakeya (Kyoto Univ.). Research presented here was conducted in their laboratories with talented members. I especially thank Drs Yuko Arita, Ryosuke Sugiyama, Mr. Kohei Fujita, and Takahiro Nakatani. I am grateful to Profs Shigeki Matsunaga (Univ. Tokyo), Toshihide Kobayashi (CNRS), Nobuaki Matsumori (Kyushu Univ.), and Hendrik Luesch (Univ. Florida) for exciting collaborations, and Prof. William Fenical (UCSD) for his warm encouragement. I thank Mayuki Sasaki for reading this paper. Research presented here was supported in part by JSPS KAKENHI (18K06717, 17H06401, 16K13086, 25702048), Nagase Science and Technology Foundation, the Institute for Fermentation, Osaka (IFO), and Suntory Institute for Bioorganic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Nishimura.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Note: Shinichi Nishimura was awarded the Sumiki-Umezawa Memorial Award from the Japan Antibiotics Research Association in 2020. This review article is partly based on his award-winning research.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot 74, 769–785 (2021). https://doi.org/10.1038/s41429-021-00468-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00468-5

Search

Quick links