Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria

Abstract

Antimicrobials have paved the way for medical and social development over the last century and are indispensable for treating infections in humans and animals. The dramatic spread and diversity of antibiotic-resistant pathogens have significantly reduced the efficacy of essentially all antibiotic classes and is a global problem affecting human and animal health. Antimicrobial resistance is influenced by complex factors such as resistance genes and dosing, which are highly nonlinear, time-lagged and multivariate coupled, and the amount of resistance data is large and redundant, making it difficult to predict and analyze. Based on machine learning methods and data mining techniques, this paper reviews (1) antimicrobial resistance data storage and analysis techniques, (2) antimicrobial resistance assessment methods and the associated risk assessment methods for antimicrobial resistance, and (3) antimicrobial resistance prediction methods. Finally, the current research results on antimicrobial resistance and the development trend are summarized to provide a systematic and comprehensive reference for the research on antimicrobial resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hutchings MI, Truman AW, Wilkinson B. Editorial overview: antimicrobials: tackling AMR in the 21st century. Curr Opin Microbiol [Internet]. 2019;51:iii–v. https://doi.org/10.1016/j.mib.2019.11.004.

    Article  PubMed  Google Scholar 

  2. Duong A, Jaelin M. 6 factors that have caused antibiotic resistance the number of new antibiotics being identified has slumped to an all time low. InfectionControl.tips. 2015;1–2.

  3. Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen JA, Klugman K, et al. Access to effective antimicrobials: a worldwide challenge. Lancet 2016;387:168–75.

    Article  PubMed  Google Scholar 

  4. Woolhouse M, Ward M, Van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc B Biol Sci. 2015;370:1–7.

    Article  CAS  Google Scholar 

  5. Walther C, Rossano A, Thomann A, Perreten V. Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol. 2008;131:348–57.

    Article  CAS  PubMed  Google Scholar 

  6. Smith R, Coast J. The true cost of antimicrobial resistance. BMJ. 2013;346:1–5.

    Article  Google Scholar 

  7. Stewardson AJ, Allignol A, Beyersmann J, Graves N, Schumacher M, Meyer R, et al. The health and economic burden of bloodstream infections caused by antimicrobial-susceptible and non-susceptible Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: A multicentre retrospective cohort study. Eurosurveillance. 2016;21:5–16.

    Article  Google Scholar 

  8. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis [Internet]. 2016;16:161–8. https://doi.org/10.1016/S1473-3099(15)00424-7.

    Article  CAS  PubMed  Google Scholar 

  9. Coetzee J, Corcoran C, Prentice E, Moodley M, Mendelson M, Poirel L, et al. Emergence of plasmid-mediated colistin resistance (MCR-1) among Escherichia coli isolated from South African patients. South Afr Med J. 2016;106:449–50.

    Article  Google Scholar 

  10. Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, et al. Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci. 2018;4:1–27.

    Article  CAS  Google Scholar 

  11. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA. 2015;112:5649–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Neill JO’. Antimicrobial resistance: tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired by Neill JO’. 2014;(December).

  13. Brogan DM, Mossialos E. A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Glob Health [Internet]. 2016;12:1–7. https://doi.org/10.1186/s12992-016-0147-y.

    Article  Google Scholar 

  14. Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev Aquac. 2020;12:640–63.

    Article  Google Scholar 

  15. Wernli D, Jørgensen PS, Harbarth S, Carroll SP, Laxminarayan R, Levrat N, et al. Antimicrobial resistance: the complex challenge of measurement to inform policy and the public. PLoS Med. 2017;14:1–9.

    Article  Google Scholar 

  16. de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13:1–6.

    Article  Google Scholar 

  17. Mack SG, Turner RL, Dwyer DJ. Achieving a predictive understanding of antimicrobial stress physiology through systems biology. Trends Microbiol [Internet]. 2018;26:296–312. https://doi.org/10.1016/j.tim.2018.02.004.

    Article  CAS  PubMed  Google Scholar 

  18. Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine. Nat Biotechnol 2018;36:829–38.

    Article  CAS  PubMed  Google Scholar 

  19. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell [Internet]. 2018;173:1581–92. https://doi.org/10.1016/j.cell.2018.05.015.

    Article  CAS  PubMed  Google Scholar 

  20. Yang JH, Wright SN, Hamblin M, McCloskey D, Alcantar MA, Schrübbers L, et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell. 2019;177:1649–.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng [Internet]. 2018;2:719–31. https://doi.org/10.1038/s41551-018-0305-z.

    Article  PubMed  Google Scholar 

  22. Webb S. Deep learning for biology. Nature. 2018;554:555–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hammerum AM, Heuer OE, Emborg H, Bagger-skjøt L, Jensen VF, Rogues A, et al. Danish integrated antimicrobial resistance monitoring and research program. Emerg Infect Dis. 2007;13:1632–9.

    Article  PubMed  Google Scholar 

  24. Gilbert JM, White DG, McDermott PF. The US National Antimicrobial Resistance Monitoring System. Future Microbiol [Internet]. 2007;2:493–500. https://doi.org/10.2217/17460913.2.5.493.

    Article  CAS  PubMed  Google Scholar 

  25. Aracil-García B, Oteo-Iglesias J, Cuevas-Lobato Ó, Lara-Fuella N, Pérez-Grajera I, Fernández-Romero S, et al. Rapid increase in resistance to third generation cephalosporins, imipenem and co-resistance in Klebsiella pneumoniae from isolated from 7140 blood-cultures (2010–2014) using EARS-Net data in Spain. Enfermedades Infecc Microbiol Clin (Engl ed) [Internet]. 2017;35:478–84. https://doi.org/10.1016/j.eimce.2017.08.007.

    Article  Google Scholar 

  26. Okura M, Sato M, Noda K. Overview of national antimicrobial resistance monitoring system in Europe and the United States. J Vet Epidemiol. 2012;16:152–6.

    Article  Google Scholar 

  27. Conly JM. Antimicrobial resistance programs in Canada 1995–2010: a critical evaluation. Antimicrob Resist Infect Control. 2012;1:1–5.

    Article  Google Scholar 

  28. Schwarz S, Alesik E, GAarestrup FM, Luebke-Becker A, Wallmann J, Werckenthin C, et al. The BfT-GermVet monitoring program—aims and basics. Berl Munch Tierarzt Wochenschr. 2007;120:357–62.

    Google Scholar 

  29. System AC of CARS. Technical programme of China antimicrobial resistance surveillance system, 2020 edition. Chin J Infect Chemother [Internet]. 2020;20:560–4. http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=KGHL202005025&DbName=CJFQTEMP.

  30. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:1–15.

    Article  Google Scholar 

  31. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFINder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother. 2019;63:1–20.

    Article  Google Scholar 

  32. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB)–structure and function. J Enzym Inhib Med Chem [Internet]. 2017;32:917–9. https://doi.org/10.1080/14756366.2017.1344235.

    Article  CAS  Google Scholar 

  33. Saha SB, Uttam V, Verma V. u-CARE: user-friendly comprehensive antibiotic resistance repository of Escherichia coli. J Clin Pathol. 2015;68:648–51.

    Article  CAS  PubMed  Google Scholar 

  34. Flandrois JP, Lina G, Dumitrescu O. MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinform. 2014;15:1–9.

    Article  CAS  Google Scholar 

  35. Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G. et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med [Internet]. 2015;7:1–10.

    CAS  Google Scholar 

  36. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad N, et al. PATRIC as a unique resource for studying antimicrobial resistance. Brief Bioinform. 2018;20:1094–102.

    Article  CAS  Google Scholar 

  37. Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2009;37:443–7.

    Article  CAS  Google Scholar 

  38. Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, et al. MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2017;45:D574–80.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar GS, Roshan PB, M DS, Rafael L-R, Marie K, Luce L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58:212–20.

    Article  CAS  Google Scholar 

  40. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.

    CAS  PubMed  Google Scholar 

  41. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cox G, Sieron A, King AM, De Pascale G, Pawlowski AC, Koteva K, et al. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem Biol [Internet]. 2017;24:98–109. https://doi.org/10.1016/j.chembiol.2016.11.011.

    Article  CAS  PubMed  Google Scholar 

  43. Macfadden DR, Fisman D, Andre J, Ara Y, Majumder MS, Bogoch II, et al. A platform for monitoring regional antimicrobial resistance, using online data sources: ResistanceOpen. J Infect Dis. 2016;214:S393–8.

    Article  PubMed  Google Scholar 

  44. Lanza VF, Baquero F, Martínez JL, Ramos-Ruíz R, González-Zorn B, Andremont A, et al. In-depth resistome analysis by targeted metagenomics. Microbiome. 2018;6:1–14.

    Article  Google Scholar 

  45. Rowe W, Baker KS, Verner-Jeffreys D, Baker-Austin C, Ryan JJ, Maskell D, et al. Search engine for antimicrobial resistance: A cloud compatible pipeline and web interface for rapidly detecting antimicrobial resistance genes directly from sequence data. PLoS One. 2015;10:1–12.

    Article  CAS  Google Scholar 

  46. Li J, Tai C, Deng Z, Zhong W, He Y, Ou HY. VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. Brief Bioinform. 2018;19:566–74.

    CAS  PubMed  Google Scholar 

  47. Iwai H, Kato-Miyazawa M, Kirikae T, Miyoshi-Akiyama T. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): a publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis [Internet]. 2015;95:843–4. https://doi.org/10.1016/j.tube.2015.09.002.

    Article  PubMed  Google Scholar 

  48. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3:1–11.

    Google Scholar 

  49. Durrant JD, Amaro RE. Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Des. 2015;85:14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laxminarayan R, Klugman KP. Communicating trends in resistance using a drug resistance index. BMJ Open. 2011;1:1–8.

    Article  Google Scholar 

  51. Klein EY, Tseng KK, Pant S, Laxminarayan R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob Heal. 2019;4:1–7.

    CAS  Google Scholar 

  52. Chitanand MP, Kadam TA, Gyananath G, Totewad ND, Balhal DK. Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. Indian J Microbiol. 2010;50:216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ciccolini M, Spoorenberg V, Geerlings SE, Prins JM, Grundmann H. Using an index-based approach to assess the population-level appropriateness of empirical antibiotic therapy. J Antimicrob Chemother. 2015;70:286–93.

    Article  CAS  PubMed  Google Scholar 

  54. Chen Y, Song B, Shan X, Qin Y, Wang L, Wang H, et al. Assessing antibiotic therapy effectiveness against the major bacterial pathogens in a hospital using an integrated index. Future Microbiol. 2017;12:853–66.

    Article  CAS  PubMed  Google Scholar 

  55. Hughes JS, Hurford A, Finley RL, Patrick DM, Wu J, Morris AM. How to measure the impacts of antibiotic resistance and antibiotic development on empiric therapy: New composite indices. BMJ Open. 2016;6:1–12.

    Article  Google Scholar 

  56. Li X, Liang B, Xu D, Wu C, Li J, Zheng Y. Antimicrobial resistance risk assessment models and database system for animal-derived pathogens. Antibiotics. 2020;9:1–16.

    Article  Google Scholar 

  57. Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Heal. 2018;2:e398–405.

    Article  Google Scholar 

  58. Vandenbroucke-Grauls CMJE, Kahlmeter G, Kluytmans J, Kluytmans-Van Den Bergh M, Monnet DL, Simonsen GS, et al. The proposed Drug Resistance Index (DRI) is not a good measure of antibiotic effectiveness in relation to drug resistance. BMJ Glob Heal. 2019;4:1–3.

    Google Scholar 

  59. Effrosynidis D, Tsikliras A, Arampatzis A, Georgios S. Species distribution modelling via feature engineering and machine learning for pelagic fishes in the Mediterranean Sea. Appl Sci. 2020;10:1–23.

    Article  CAS  Google Scholar 

  60. Kennedy A, Nash G, Rattenbury NJ, Kempa-liehr AW. Modelling the projected separation of microlensing events using systematic time-series feature engineering. Astron Comput [Internet]. 2021;35:100460. https://doi.org/10.1016/j.ascom.2021.100460.

    Article  Google Scholar 

  61. Wang Q, Yuan Z, Du Q, Li X. GETNET: a general end-to-end 2-D CNN framework for hyperspectral image change detection. IEEE Trans Geosci Remote Sens. 2019;57:3–13.

    Article  Google Scholar 

  62. Li Y, Xu Z, Han W, Cao H, Umarov R, Yan A, et al. HMD-ARG: hierarchical multi-task deep learning for annotating antibiotic resistance genes. Microbiome. 2021;9:1–12.

    Article  CAS  Google Scholar 

  63. Bo-yu A, Man H, Xiang-yue X, Wen-jin M, Ling-li H, Fu-nan W, et al. Research progress of risk assessment on veterinary antimicrobial resistance. Chinese J Antibiot. 2021;46:27–33.

    Google Scholar 

  64. Collineau L, Carmo LP, Endimiani A, Magouras I, Müntener C, Schüpbach-Regula G, et al. Risk ranking of antimicrobial-resistant hazards found in meat in Switzerland. Risk Anal. 2018;38:1070–84.

    Article  PubMed  Google Scholar 

  65. Collineau L, Chapman B, Bao X, Sivapathasundaram B, Carson CA, Fazil A, et al. A farm-to-fork quantitative risk assessment model for Salmonella Heidelberg resistant to third-generation cephalosporins in broiler chickens in Canada. Int J Food Microbiol [Internet]. 2020;330:108559. https://doi.org/10.1016/j.ijfoodmicro.2020.108559.

    Article  CAS  PubMed  Google Scholar 

  66. Hoa PTP, Managaki S, Nakada N, Takada H, Shimizu A, Anh DH, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci Total Environ [Internet]. 2011;409:2894–901. https://doi.org/10.1016/j.scitotenv.2011.04.030.

    Article  CAS  PubMed  Google Scholar 

  67. Beaudequin D, Harden F, Roiko A, Mengersen K. Utility of Bayesian networks in QMRA-based evaluation of risk reduction options for recycled water. Sci Total Environ [Internet]. 2016;541:1393–409. https://doi.org/10.1016/j.scitotenv.2015.10.030.

    Article  CAS  PubMed  Google Scholar 

  68. Pouillot R, Beaudeau P, Denis JB, Derouin F. A Quantitative risk assessment of waterborne cryptosporidiosis in france using second-order Monte Carlo simulation. Risk Anal. 2004;24:1–17.

    Article  PubMed  Google Scholar 

  69. Monaco DC, Zapata L, Hunter E, Salomon H, Dilernia DA. Resistance profile of HIV-1 quasispecies in patients under treatment failure using single molecule, real-time sequencing. Aids. 2020;34:2201–10.

  70. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019;10:1–12.

  71. Okada K, Araki M, Sakashita T, Ma B, Kanada R, Yanagitani N, et al. Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine [Internet]. 2019;41:105–19. https://doi.org/10.1016/j.ebiom.2019.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56–66.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol. 2016;82:459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother. 2015;70:2763–9.

    Article  CAS  PubMed  Google Scholar 

  75. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. 2015;15:1193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gordon NC, Price JR, Cole K, Everitt R, Morgan M, Finney J, et al. Prediction of staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol. 2014;52:1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moran RA, Anantham S, Holt KE, Hall RM. Prediction of antibiotic resistance from antibiotic resistance genes detected in antibiotic-resistant commensal Escherichia coli using PCR or WGS. J Antimicrob Chemother. 2017;72:700–4.

    CAS  PubMed  Google Scholar 

  78. Pesesky MW, Hussain T, Wallace M, Patel S, Andleeb S, Burnham CAD, et al. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in gram-negative bacilli from whole genome sequence data. Front Microbiol. 2016;7:1–17.

    Article  Google Scholar 

  79. Rishishwar L, Petit RA, Kraft CS, Jordana IK. Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus. J Bacteriol. 2014;196:940–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C, Olson R, et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep [Internet]. 2016;6:1–12. https://doi.org/10.1038/srep27930.

    Article  CAS  Google Scholar 

  81. Her HL, Wu YW. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics. 2018;34:i89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Valizadehaslani T, Zhao Z, Sokhansanj BA, Rosen GL. Amino acid K-mer feature extraction for quantitative antimicrobial resistance (AMR) prediction by machine learning and model interpretation for biological insights. Biology. 2020;9:1–92.

  83. Maguire F, Rehman MA, Carrillo C, Diarra MS, Beiko RG. Identification of primary antimicrobial resistance drivers in agricultural nontyphoidal Salmonella enterica serovars by using machine learning. mSystems. 2019;4:1–17.

    Article  Google Scholar 

  84. Feretzakis G, Loupelis E, Sakagianni A, Kalles Di, Lada M.Christopoulos C, et al. Using machine learning algorithms to predict antimicrobial resistance and assist empirical treatment. Stud Health Technol Inform. 2020;272:75–8.

  85. Lakin SM, Kuhnle A, Alipanahi B, Noyes NR, Dean C, Muggli M, et al. Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences. Commun Biol [Internet]. 2019;2. https://doi.org/10.1038/s42003-019-0545-9.

  86. Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T, Oliver A, et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics. EMBO Mol Med. 2020;12:1–19.

    Article  CAS  Google Scholar 

  87. Kulshrestha S, Panda S, Nayar D, Dohe V, Jarali A. Prediction of antimicrobial resistance for disease-causing agents using machine learning. In: Proceedings of the second international conference of intelligence computer controlled system. 2019;972–5.

  88. Martínez-Agüero S, Mora-Jiménez I, Lérida-García J, Álvarez-Rodríguez J, Soguero-Ruiz C. Machine learning techniques to identify antimicrobial resistance in the intensive care unit. Entropy. 2019;21:1–24.

    Article  Google Scholar 

  89. Nguyen M, Wesley Long S, McDermott PF, Olsen RJ, Olson R, Stevens RL, et al. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2019;57:1–15.

  90. Liu Z, Deng D, Lu H, Sun J, Lv L, Li S, et al. Evaluation of machine learning models for predicting antimicrobial resistance of Actinobacillus pleuropneumoniae from whole genome sequences. Front Microbiol. 2020;11:1–7.

    CAS  Google Scholar 

  91. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  92. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol [Internet]. 2015;33:831–8. https://doi.org/10.1038/nbt.3300.

    Article  CAS  PubMed  Google Scholar 

  93. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep learning approach to antibiotic discovery. Cell [Internet]. 2020;180:688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez AS, Maziers N, et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol [Internet]. 2019;4:112–23. https://doi.org/10.1038/s41564-018-0292-6.

    Article  CAS  PubMed  Google Scholar 

  95. Duranti S, Lugli GA, Mancabelli L, Turroni F, Milani C, Mangifesta M, et al. Prevalence of antibiotic resistance genes among human gut- derived bifidobacteria. Appl Environ Microbiol. 2017;83:1–14.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports provided by the National Natural Science Foundation of China (No. 61802411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Gong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Z., Liang, B. et al. A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria. J Antibiot 74, 838–849 (2021). https://doi.org/10.1038/s41429-021-00471-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00471-w

Search

Quick links