Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterologous expression of a natural product biosynthetic gene cluster from Cordyceps militaris

Abstract

Cordyceps is a genus of ascomycete fungi widely used in old Chinese medicine, and many investigations have focus on uncovering their biological activities. Until now, only a few compounds have been identified from Cordyceps, mainly due to their poor yield. So as to make full use of Cordyceps, we used the strategy of genome mining and heterologous expression to discover natural products (NPs) from Cordyceps militaris. Analysis of the genome sequence of Cordyceps militaris CM01 showed the presence of a cryptic gene cluster encoding a highly-reducing polyketide synthetase (HR-PKS), enoyl-reductase (ER) and cytochrome P450. Heterologous expression in Aspergillus nidulans enabled the identification of two new polyketides, cordypyrone A and B. Their structures were determined by 1D and 2D NMR techniques. They showed only modest activities against pathogenic bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Mycobacteria tuberculosis and Bacillus cereus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Refaz Ahmad Dar*MS, Saika Rasool, Parvaiz Hassan Qazi. Natural product medicines: a literature update. J Phytopharmacology. 2017;6:340–2.

    Article  Google Scholar 

  2. Jiang Z-D, An Z Bioactive fungal natural products through classic and biocombinatorial approaches. In: Atta ur R (ed). Studies in natural products chemistry, vol. 22. Elsevier, New York, 2000, pp 245-72.

  3. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  Google Scholar 

  4. Butler MS, Robertson AA, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep. 2014;31:1612–61.

    Article  CAS  Google Scholar 

  5. Kinghorn AD, DEB EJ, Lucas DM, Rakotondraibe HL, Orjala J, Soejarto DD, et al. Discovery of anticancer agents of diverse natural origin. Anticancer Res. 2016;36:5623–37.

    Article  CAS  Google Scholar 

  6. Doostparast Torshizi A, Wang K. Next-generation sequencing in drug development: target identification and genetically stratified clinical trials. Drug Discov Today. 2018;23:1776–83.

    Article  CAS  Google Scholar 

  7. Brakhage AA, Schroeckh V. Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48:15–22.

    Article  CAS  Google Scholar 

  8. Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, et al. Minimum Information about a biosynthetic Gene cluster. Nat Chem Biol. 2015;11:625–31.

    Article  CAS  Google Scholar 

  9. Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol. 2014;41:175–84.

    Article  CAS  Google Scholar 

  10. Chen R, Zhang Q, Tan B, Zheng L, Li H, Zhu Y, et al. Genome mining and activation of a silent PKS/NRPS gene cluster direct the production of totopotensamides. Org Lett. 2017;19:5697–5700.

    Article  CAS  Google Scholar 

  11. Lin X, Yuan S, Chen S, Chen B, Xu H, Liu L, et al. Heterologous expression of Ilicicolin H biosynthetic gene cluster and production of a new potent antifungal reagent, Ilicicolin J. Molecules. 2019;24:2267.

    Article  CAS  Google Scholar 

  12. Gao DW, Jamieson CS, Wang G, Yan Y, Zhou J, Houk KN, et al. A polyketide cyclase that forms medium-ring lactones. J Am Chem Soc. 2021;143:80–84.

    Article  CAS  Google Scholar 

  13. Zhang JM, Wang HH, Liu X, Hu CH, Zou Y. Heterologous and engineered biosynthesis of nematocidal polyketide-nonribosomal peptide hybrid macrolactone from extreme thermophilic fungi. J Am Chem Soc. 2020;142:1957–65.

    Article  CAS  Google Scholar 

  14. Velten R, Josten I, Steglich W. Ungesättigte 6-Alkylpyrone aus dem Schleimpilz Ceratiomyxa fruticulosa (Myxomycetes). Liebigs Ann. 1995;1995:81–85.

    Article  Google Scholar 

  15. Brian PW, Curtis PJ, Hemming HG, Unwin CH, Wright JM. Alternaric acid, a biologically active metabolic product of the fungus Alternaria solani. Nature. 1949;164:534–534.

    Article  CAS  Google Scholar 

  16. Fujii I, Yoshida N, Shimomaki S, Oikawa H, Ebizuka Y. An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem Biol. 2005;12:1301–9.

    Article  CAS  Google Scholar 

  17. Fairlamb IJ, Marrison LR, Dickinson JM, Lu FJ, Schmidt JP. 2-pyrones possessing antimicrobial and cytotoxic activities. Bioorg Med Chem. 2004;12:4285–99.

    Article  CAS  Google Scholar 

  18. Wang X, Gao YL, Zhang ML, Zhang HD, Huang JZ, Li L. Genome mining and biosynthesis of the Acyl-CoA:cholesterol acyltransferase inhibitor beauveriolide I and III in Cordyceps militaris. J Biotechnol. 2020;309:85–91.

    Article  CAS  Google Scholar 

  19. Li L, Yu P, Tang M-C, Zou Y, Gao S-S, Hung Y-S, et al. Biochemical characterization of a eukaryotic decalin-forming diels-alderase. J Am Chem Soc. 2016;138:15837–40.

    Article  CAS  Google Scholar 

  20. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6:71–79.

    Article  Google Scholar 

  21. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biol. 2011;12:R116.

    Article  CAS  Google Scholar 

  22. Bumpus SB, Magarvey NA, Kelleher NL, Walsh CT, Calderone CT. Polyunsaturated fatty-acid-like trans-enoyl reductases utilized in polyketide biosynthesis. J Am Chem Soc. 2008;130:11614–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (31870039) and Natural Science Foundation of Fujian Province (2018J01727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YL., Yu, C. & Li, L. Heterologous expression of a natural product biosynthetic gene cluster from Cordyceps militaris. J Antibiot 75, 16–20 (2022). https://doi.org/10.1038/s41429-021-00478-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00478-3

Search

Quick links