Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The polypeptide antibiotic polymyxin B acts as a pro-inflammatory irritant by preferentially targeting macrophages

Abstract

Polymyxin B (PMB) is an essential antibiotic active against multidrug-resistant bacteria, such as multidrug-resistant Pseudomonas aeruginosa (MDRP). However, the clinical use of PMB is limited, because PMB causes serious side effects, such as nephrotoxicity and neurotoxicity, probably due to its cytotoxic activity. However, cytotoxic mechanisms of PMB are poorly understood. In this study, we found that macrophages are particularly sensitive to PMB, when compared with other types of cells, including fibroblasts and proximal tubule (PT) cells. Of note, PMB-induced necrosis of macrophages allowed passive release of high mobility group box 1 (HMGB1). Moreover, upon exposure of PMB to macrophages, the innate immune system mediated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome that promotes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) was stimulated. Interestingly, PMB-induced IL-1β release occurred in the absence of the pore-forming protein gasdermin D (GSDMD), which supports the idea that PMB causes plasma membrane rupture accompanying necrosis. Emerging evidence has suggested that both HMGB1 and IL-1β released from macrophages contribute to excessive inflammation that promote pathogenesis of various diseases, including nephrotoxicity and neurotoxicity. Therefore, these biochemical properties of PMB in macrophages may be associated with the induction of the adverse organ toxicity, which provides novel insights into the mechanisms of PMB-related side effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirata Y, Takahashi M, Yamada Y, Matsui R, Inoue A, Ashida R, et al. trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway. Sci Rep. 2021;11:10350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirata Y, Inoue A, Suzuki S, Takahashi M, Matsui R, Kono N, et al. trans-Fatty acids facilitate DNA damage-induced apoptosis through the mitochondrial JNK-Sab-ROS positive feedback loop. Sci Rep. 2020;10:2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirata Y, Nada Y, Yamada Y, Toyama T, Fukunaga K, Hwang GW, et al. Elaidic acid potentiates extracellular ATP-induced apoptosis via the P2X. Biol Pharm Bull. 2020;43:1562–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hirata Y, Takahashi M, Kudoh Y, Kano K, Kawana H, Makide K, et al. -Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J Biol Chem. 2017;292:8174–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamada M, Suzuki M, Noguchi T, Yokosawa T, Sekiguchi Y, Mutoh N, et al. The Antibiotic Cefotaxime Works as Both an Activator of Nrf2 and an Inducer of HSP70 in Mammalian Cells. BPB Rep. 2020;3:16–21.

    Article  Google Scholar 

  6. Suzuki M, Asai Y, Kagi T, Noguchi T, Yamada M, Hirata Y, et al. TAK1 mediates ROS generation triggered by the specific cephalosporins through noncanonical mechanisms. Int J Mol Sci. 2020;21:9497.

    Article  CAS  PubMed Central  Google Scholar 

  7. Kudoh Y, Noguchi T, Ishii C, Maeda K, Nishidate A, Hirata Y, et al. Antibiotic vancomycin promotes the gene expression of NOD-like receptor families in macrophages. BPB Rep. 2018;1:6–10.

    Article  Google Scholar 

  8. Noguchi T, Suzuki M, Mutoh N, Hirata Y, Tsuchida M, Miyagawa S, et al. Nuclear-accumulated SQSTM1/p62-based ALIS act as microdomains sensing cellular stresses and triggering oxidative stress-induced parthanatos. Cell Death Dis. 2018;9:1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan Z, Tam VH. Polymyxin B: a new strategy for multidrug-resistant Gram-negative organisms. Expert Opin Investig Drugs. 2008;17:661–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–15.

    Article  CAS  PubMed  Google Scholar 

  11. Zavascki AP, Nation RL. Nephrotoxicity of polymyxins: is there any difference between colistimethate and polymyxin B? Antimicrob Agents Ch. 2017;61:e02319–16.

    Article  CAS  Google Scholar 

  12. Zheng G, Cao L, Che Z, Mao E, Chen E, He J. Polymyxin B-induced skin hyperpigmentation: a rare case report and literature review. BMC Pharm Toxicol. 2018;19:41.

    Article  Google Scholar 

  13. Gupta S, Govil D, Kakar PN, Prakash O, Arora D, Das S, et al. Colistin and polymyxin B: a re-emergence. Indian J Crit Care Med. 2009;13:49–53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care. 2006;10:R27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mulay SR, Linkermann A, Anders HJ. Necroinflammation in kidney disease. J Am Soc Nephrology: JASN. 2016;27:27–39.

    Article  CAS  Google Scholar 

  16. Yokosawa T, Yamada M, Noguchi T, Suzuki S, Hirata Y, Matsuzawa A. Pro-caspase-3 protects cells from polymyxin B-induced cytotoxicity by preventing ROS accumulation. J Antibiot (Tokyo). 2019;72:848–52.

    Article  CAS  Google Scholar 

  17. Anders HJ. Of Inflammasomes and alarmins: IL-1beta and IL-1alpha in kidney disease. J Am Soc Nephrology: JASN. 2016;27:2564–75.

    Article  CAS  Google Scholar 

  18. Asavarut P, Zhao H, Gu J, Ma D. The role of HMGB1 in inflammation-mediated organ injury. Acta anaesthesiologica Taiwanica: Off J Taiwan Soc Anesthesiologists. 2013;51:28–33.

    Article  Google Scholar 

  19. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.

    Article  CAS  PubMed  Google Scholar 

  20. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity. 2018;48:35–44 e36.

    Article  CAS  PubMed  Google Scholar 

  21. Anders HJ, Muruve DA. The inflammasomes in kidney disease. J Am Soc Nephrology: JASN. 2011;22:1007–18.

    Article  CAS  Google Scholar 

  22. Noguchi T, Sekiguchi Y, Kudoh Y, Naganuma R, Kagi T, Nishidate A, et al. Gefitinib initiates sterile inflammation by promoting IL-1β and HMGB1 release via two distinct mechanisms. Cell Death Dis. 2021;12:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kagi T, Noguchi T, Matsuzawa A. Mechanisms of gefitinib-induced interstitial pneumonitis: why and how the TKI perturbs innate immune systems? Oncotarget. 2021;12:1321–2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lu B, Wang H, Andersson U, Tracey KJ. Regulation of HMGB1 release by inflammasomes. Protein cell. 2013;4:163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durkin ME, Qian X, Popescu NC, Lowy DR. Isolation of Mouse Embryo Fibroblasts. Bio-protocol. 2013;3:e908.

    Article  PubMed  Google Scholar 

  26. Noguchi T, Ishii K, Fukutomi H, Naguro I, Matsuzawa A, Takeda K, et al. Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J Biol Chem. 2008;283:7657–65.

    Article  CAS  PubMed  Google Scholar 

  27. Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics. 2012;4:700–8.

    Article  CAS  PubMed  Google Scholar 

  28. Noguchi T, Tsuchida M, Kogue Y, Spadini C, Hirata Y, Matsuzawa A. Brefeldin A-inhibited guanine nucleotide-exchange factor 1 (BIG1) governs the recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) to Tumor necrosis factor receptor 1 (TNFR1) signaling complexes. Int J Mol Sci. 2016;17:1869.

    Article  PubMed Central  Google Scholar 

  29. Shimada T, Kudoh Y, Noguchi T, Kagi T, Suzuki M, Tsuchida M, et al. The E3 ubiquitin-protein ligase RNF4 promotes TNF-alpha-induced cell death triggered by RIPK1. Int J Mol Sci. 2021;22:5796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsuchida M, Yokosawa T, Noguchi T, Shimada T, Yamada M, Sekiguchi Y, et al. Pro-apoptotic functions of TRAF2 in p53-mediated apoptosis induced by cisplatin. J Toxicol Sci. 2020;45:219–26.

    Article  CAS  PubMed  Google Scholar 

  31. Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 2015;31:1120–3.

    Article  CAS  PubMed  Google Scholar 

  32. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sekiguchi Y, Yamada M, Noguchi T, Noomote C, Tsuchida M, Kudoh Y, et al. The anti-cancer drug gefitinib accelerates Fas-mediated apoptosis by enhancing caspase-8 activation in cancer cells. J Toxicol Sci. 2019;44:435–40.

    Article  CAS  PubMed  Google Scholar 

  34. Hirata Y, Katagiri K, Nagaoka K, Morishita T, Kudoh Y, Hatta T, et al. TRIM48 promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1. Cell Rep. 2017;21:2447–57.

    Article  CAS  PubMed  Google Scholar 

  35. Toyama T, Hoshi T, Noguchi T, Saito Y, Matsuzawa A, Naganuma A, et al. Methylmercury induces neuronal cell death by inducing TNF-alpha expression through the ASK1/p38 signaling pathway in microglia. Sci Rep. 2021;11:9832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Azad MA, Finnin BA, Poudyal A, Davis K, Li J, Hill PA, et al. Polymyxin B induces apoptosis in kidney proximal tubular cells. Antimicrob Agents Chemother. 2013;57:4329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Avedissian SN, Liu J, Rhodes NJ, Lee A, Pais GM, Hauser AR, et al. A review of the clinical pharmacokinetics of polymyxin B. Antibiotics (Basel). 2019;8:31.

    Article  CAS  Google Scholar 

  38. Zavascki AP, Goldani LZ, Cao G, Superti SV, Lutz L, Barth AL, et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2008;47:1298–304.

    Article  CAS  Google Scholar 

  39. Chen Q, Guan X, Zuo X, Wang J, Yin W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B. 2016;6:183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano A, Aleksovska K, et al. HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci. 2018;12:628.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allam R, Darisipudi MN, Rupanagudi KV, Lichtnekert J, Tschopp J, Anders HJ. Cutting edge: cyclic polypeptide and aminoglycoside antibiotics trigger IL-1beta secretion by activating the NLRP3 inflammasome. J Immunol. 2011;186:2714–8.

    Article  CAS  PubMed  Google Scholar 

  42. Yun B, Zhang T, Azad MAK, Wang J, Nowell CJ, Kalitsis P, et al. Polymyxin B causes DNA damage in HK-2 cells and mice. Arch Toxicol. 2018;92:2259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hermsen ED, Sullivan CJ, Rotschafer JC. Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin North Am. 2003;17:545–62.

    Article  PubMed  Google Scholar 

  44. Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Thakur SA, Hamilton RF Jr, Holian A. Role of scavenger receptor a family in lung inflammation from exposure to environmental particles. J Immunotoxicol. 2008;5:151–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kanno S, Furuyama A, Hirano S. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci. 2007;97:398–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of Lab of Health Chemistry for helpful discussions.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP21H02691 and JP21H02620, MEXT KAKENHI JP21H00268, and by AMED under Grant Number JP19lm0203002. This work was also supported by the Takeda Science Foundation, and the Division for Interdisciplinary Advanced Research and Education (DIARE) Tohoku University.

Author information

Authors and Affiliations

Authors

Contributions

Data curation: T.N., and A.M.; Funding acquisition: T.K., T.N., and A.M.; Investigation: T.K., R.N., A.I., S.H., and Y.S.; Project administration: T.N.; Supervision: A.M.; Writing—original draft: T.N.; Writing—review and editing: A.M.

Corresponding authors

Correspondence to Takuya Noguchi or Atsushi Matsuzawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagi, T., Naganuma, R., Inoue, A. et al. The polypeptide antibiotic polymyxin B acts as a pro-inflammatory irritant by preferentially targeting macrophages. J Antibiot 75, 29–39 (2022). https://doi.org/10.1038/s41429-021-00490-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00490-7

This article is cited by

Search

Quick links