Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vitamin D testing: advantages and limits of the current assays

Abstract

Vitamin D deficiency and insufficiency has become a pandemic health problem with a consequent increase of requests for determining circulating levels of 25-hydroxyvitamin D [25(OH)D]. However, the analytical performance of these immunoassays, including radioimmunoassay and ELISA, is highly variable, and even mass spectrometric methods, which nowadays serves as the gold standard for the quantitatively determination of 25(OH)D, do not necessarily produce comparable results, creating limitations for the definition of normal vitamin D status ranges. To solve this problem, great efforts have been made to promote standardization of laboratory assays, which is important to achieve comparable results across different methods and manufacturers. In this review, we performed a systematic analysis evaluating critically the advantages and limits of the current assays available for the measure of vitamin D status, i.e., circulating 25(OH)D and its metabolites, making suggestions that could be used in the clinical practice. Moreover, we also suggest the use of alternatives to blood test, including standardized surveys that may be of value in alerting health-care professionals about the vitamin D status of their patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18:153–65.

    CAS  PubMed  Google Scholar 

  2. Hollis BW, Kamerud JQ, Selvaag SR, Lorenz JD, Napoli JL. Determination of vitamin D status by radioimmunoassay with an 125I-labeled tracer. Clin Chem. 1993;39:529–33.

    CAS  PubMed  Google Scholar 

  3. Ersfeld DL, Rao DS, Body JJ, Sackrison JL Jr, Miller AB, Parikh N, et al. Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin Biochem. 2004;37:867–74.

    CAS  PubMed  Google Scholar 

  4. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    CAS  PubMed  Google Scholar 

  5. Roux C, Bischoff-Ferrari HA, Papapoulos SE, de Papp AE, West JA, Bouillon R. New insights into the role of vitamin D and calcium in osteoporosis management: an expert roundtable discussion. Curr Med Res Opin. 2008;24:1363–70.

    CAS  PubMed  Google Scholar 

  6. Muscogiuri G, Altieri B, Annweiler C, Balercia G, Pal HB, Boucher BJ, et al. Vitamin D and chronic diseases: the current state of the art. Arch Toxicol. 2017;91:97–107.

    CAS  PubMed  Google Scholar 

  7. Muscogiuri G, Barrea L, Altieri B, Di Somma C, Bhattoa H, Laudisio D, et al. Calcium and vitamin D supplementation. Myths and realities with regard to cardiovascular risk. Curr Vasc Pharm. 2019;17:610–7.

    CAS  Google Scholar 

  8. Herrmann M, Sullivan DR, Veillard AS, McCorquodale T, Straub IR, Scott R, et al. Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes Care. 2015;38:521–8.

    CAS  PubMed  Google Scholar 

  9. Grant WB, Moukayed M. Vitamin D3 from ultraviolet-B exposure or oral intake in relation to cancer incidence and mortality. Curr Nutr Rep. 2019;8:203–11.

    CAS  PubMed  Google Scholar 

  10. Altieri B, Grant WB, Della Casa S, Orio F, Pontecorvi A, Colao A, et al. Vitamin D and pancreas: the role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit Rev Food Sci Nutr. 2017;57:3472–88.

    CAS  PubMed  Google Scholar 

  11. Altieri B, Muscogiuri G, Barrea L, Mathieu C, Vallone CV, Mascitelli L, et al. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Rev Endocr Metab Disord. 2017;18:335–46.

    CAS  PubMed  Google Scholar 

  12. Muscogiuri G, Altieri B, Penna-Martinez M, Badenhoop K. Focus on vitamin D and the adrenal gland. Horm Metab Res. 2015;47:239–46.

    CAS  PubMed  Google Scholar 

  13. Farrell CJ, Martin S, McWhinney B, Straub I, Williams P, Herrmann M. State-of-the-art vitamin D assays: a comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin Chem. 2012;58:531–42.

    CAS  PubMed  Google Scholar 

  14. Enko D, Fridrich L, Rezanka E, Stolba R, Ernst J, Wendler I, et al. 25-hydroxy-Vitamin D status: limitations in comparison and clinical interpretation of serum-levels across different assay methods. Clin Lab. 2014;60:1541–50.

    CAS  PubMed  Google Scholar 

  15. Bikle DD. Vitamin D assays. Front Horm Res. 2018;50:14–30.

    PubMed  Google Scholar 

  16. Rahme M, Al-Shaar L, Singh R, Baddoura R, Halaby G, Arabi A, et al. Limitations of platform assays to measure serum 25OHD level impact on guidelines and practice decision making. Metabolism. 2018;89:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Binkley N, Krueger DC, Morgan S, Wiebe D. Current status of clinical 25-hydroxyvitamin D measurement: an assessment of between-laboratory agreement. Clin Chim Acta. 2010;411:1976–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stokes CS, Lammert F, Volmer DA. Analytical methods for quantification of vitamin D and implications for research and clinical practice. Anticancer Res. 2018;38:1137–44.

    PubMed  Google Scholar 

  19. Tirabassi G, Salvio G, Altieri B, Ronchi CL, Della Casa S, Pontecorvi A, et al. Adrenal disorders: is there any role for vitamin D? Rev Endocr Metab Disord. 2017;18:355–62.

    CAS  PubMed  Google Scholar 

  20. Muscogiuri G, Altieri B, de Angelis C, Palomba S, Pivonello R, Colao A, et al. Shedding new light on female fertility: the role of vitamin D. Rev Endocr Metab Disord. 2017;18:273–83.

    CAS  PubMed  Google Scholar 

  21. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8.

    CAS  PubMed  Google Scholar 

  22. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J Clin Endocrinol Metab. 2012;97:1153–8.

    CAS  PubMed  Google Scholar 

  23. Hollis BW. Editorial: The determination of circulating 25-hydroxyvitamin D: no easy task. J Clin Endocrinol Metab. 2004;89:3149–51.

    CAS  PubMed  Google Scholar 

  24. Moreau E, Bacher S, Mery S, Le Goff C, Piga N, Vogeser M, et al. Performance characteristics of the VIDAS(R) 25-OH Vitamin D Total assay - comparison with four immunoassays and two liquid chromatography-tandem mass spectrometry methods in a multicentric study. Clin Chem Lab Med. 2016;54:45–53.

    CAS  PubMed  Google Scholar 

  25. Koivula MK, Matinlassi N, Laitinen P, Risteli J. Four automated 25-OH total vitamin D immunoassays and commercial liquid chromatography tandem-mass spectrometry in Finnish population. Clin Lab. 2013;59:397–405.

    CAS  PubMed  Google Scholar 

  26. Moon HW, Cho JH, Hur M, Song J, Oh GY, Park CM, et al. Comparison of four current 25-hydroxyvitamin D assays. Clin Biochem. 2012;45:326–30.

    CAS  PubMed  Google Scholar 

  27. Hsu SA, Soldo J, Gupta M. Evaluation of two automated immunoassays for 25-OH vitamin D: comparison against LC-MS/MS. J Steroid Biochem Mol Biol. 2013;136:139–45.

    CAS  PubMed  Google Scholar 

  28. Holmes EW, Garbincius J, McKenna KM. Analytical variability among methods for the measurement of 25-hydroxyvitamin D: still adding to the noise. Am J Clin Pathol. 2013;140:550–60.

    CAS  PubMed  Google Scholar 

  29. Martins-Costa P, Martins H, Bravo F, Cruz M, Reis J, Oliveira JC. Comparison of automated methods for measurement of 25-hydroxyvitamin D. Clin Lab. 2013;59:885–91.

    CAS  PubMed  Google Scholar 

  30. Klapkova E, Cepova J, Pechova M, Dunovska K, Kotaska K, Prusa R. A comparison of four methods (immunochemistry and HPLC) for determination of 25-(OH)-vitamin D in postmenopausal women. Clin Lab. 2017;63:385–8.

    CAS  PubMed  Google Scholar 

  31. Wyness SP, Straseski JA. Performance characteristics of six automated 25-hydroxyvitamin D assays: mind your 3s and 2s. Clin Biochem. 2015;48:1089–96.

    CAS  PubMed  Google Scholar 

  32. Atef SH. Vitamin D assays in clinical laboratory: past, present and future challenges. J Steroid Biochem Mol Biol. 2018;175:136–7.

    CAS  PubMed  Google Scholar 

  33. Carter GD, Carter R, Jones J, Berry J. How accurate are assays for 25-hydroxyvitamin D? Data from the International Vitamin D External Quality Assessment Scheme. Clin Chem. 2004;50:2195–7.

    CAS  PubMed  Google Scholar 

  34. 510(K) FDA submission. Substantial equivalence determination. Decision summary. Assay only template. https://www.accessdata.fda.gov/cdrh_docs/reviews/K071480.pdf (2012).

  35. Fuleihan Gel H, Bouillon R, Clarke B, Chakhtoura M, Cooper C, McClung M, et al. Serum 25-hydroxyvitamin D levels: variability, knowledge gaps, and the concept of a desirable range. J Bone Min Res. 2015;30:1119–33.

    Google Scholar 

  36. Farrell CJ, Herrmann M. Determination of vitamin D and its metabolites. Best Pract Res Clin Endocrinol Metab. 2013;27:675–88.

    CAS  PubMed  Google Scholar 

  37. Lim YK, Park AJ, Kweon OJ, Choi JH. Performance evaluation and measurement uncertainty determination of the new version of the Abbott ARCHITECT 25-OH vitamin D 5P02 assay. Am J Clin Pathol. 2019;151:209–16.

    CAS  PubMed  Google Scholar 

  38. Madenci OC, Orcun A, Yildiz Z, Sirmali R, Tuncbilek N, Yucel N, et al. Evaluation of new Beckman Coulter 25(OH) Vitamin D assay and potential improvement of clinical interpretation. Biochem Med (Zagreb). 2017;27:332–41.

    Google Scholar 

  39. Gardien P, Moineau MP, Kerspern H, Bordron A, Carre JL. [Comparative study of parathormone and vitamin D measurements by three automats: ADVIA Centaur XP(R) (Siemens), ISYS(R) (IDS) and Liaison(R) (Diasorin)]. Ann Biol Clin (Paris). 2014;72:443–52.

    CAS  Google Scholar 

  40. Denimal D, Roux S, Duvillard L. Evaluation of the new restandardized 25-hydroxyvitamin D assay on the iSYS platform. Clin Biochem. 2018;52:156–60.

    CAS  PubMed  Google Scholar 

  41. Asif M, Groboske SE, Leung EKY, Yeo KJ, van Wijk XMR. Evaluation of a new generation automated assay for 25-hydroxy vitamin D based on competitive protein binding. J Appl Lab Med. 2019;4:247–53.

    PubMed  Google Scholar 

  42. Bonelli FH, Hollis BW. Detection of 1,25-dihydroxyvitamin D in human serum using receptor assisted chemiluminescent hormone assay technology. In: Feldman DP, Pike JW, Bouillon R, Giovannucci E, Goltzman D, Hewison M, editors. Vitamin D. 4th edn. London: Academic Press; 2018. p. 903–7.

    Google Scholar 

  43. Garnett E, Li J, Rajapakshe D, Tam E, Meng QH, Devaraj S. Efficacy of two vitamin D immunoassays to detect 25-OH vitamin D2 and D3. Pract Lab Med. 2019;17:e00130.

    PubMed  PubMed Central  Google Scholar 

  44. de Koning L, Al-Turkmani MR, Berg AH, Shkreta A, Law T, Kellogg MD. Variation in clinical vitamin D status by DiaSorin Liaison and LC-MS/MS in the presence of elevated 25-OH vitamin D2. Clin Chim Acta. 2013;415:54–8.

    PubMed  Google Scholar 

  45. Carter GD, Berry J, Durazo-Arvizu R, Gunter E, Jones G, Jones J, et al. Hydroxyvitamin D assays: An historical perspective from DEQAS. J Steroid Biochem Mol Biol. 2018;177:30–5.

    CAS  PubMed  Google Scholar 

  46. Hollis BW. Measuring 25-hydroxyvitamin D in a clinical environment: challenges and needs. Am J Clin Nutr. 2008;88:507S–10S.

    CAS  PubMed  Google Scholar 

  47. Phinney KW, Tai SS, Bedner M, Camara JE, Chia RRC, Sander LC, et al. Development of an improved standard reference material for vitamin D metabolites in human serum. Anal Chem. 2017;89:4907–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stepman HC, Vanderroost A, Van Uytfanghe K, Thienpont LM. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem. 2011;57:441–8.

    CAS  PubMed  Google Scholar 

  49. Volmer DA, Mendes LR, Stokes CS. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom Rev. 2015;34:2–23.

    CAS  PubMed  Google Scholar 

  50. Herrmann M, Farrell CL, Pusceddu I, Fabregat-Cabello N, Cavalier E. Assessment of vitamin D status - a changing landscape. Clin Chem Lab Med. 2017;55:3–26.

    CAS  PubMed  Google Scholar 

  51. Cavalier E, Souberbielle JC. Vitamin D and its metabolites: from now and beyond. EJIFCC. 2018;29:105–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zelzer SG, W; Herrmann, M. Measurement of vitamin D metabolites by mass spectrometry, an analytical challenge. J Lab Precis Med. 2018. https://doi.org/10.21037/jlpm.2018.11.06.

    Google Scholar 

  53. Garg U. 25-Hydroxyvitamin D testing: immunoassays versus tandem mass spectrometry. Clin Lab Med. 2018;38:439–53.

    PubMed  Google Scholar 

  54. Burdette CQ, Camara JE, Nalin F, Pritchett J, Sander LC, Carter GD, et al. Establishing an accuracy basis for the Vitamin D External Quality Assessment Scheme (DEQAS). J AOAC Int. 2017;100:1277–87.

    CAS  PubMed  Google Scholar 

  55. Carter GD, Ahmed F, Berry J, Cavalier E, Durazo-Arvizu R, Gunter E, et al. External quality assessment of 24, 25-dihydroxyvitamin D3 (24, 25(OH)2D3) assays. J Steroid Biochem Mol Biol. 2019;187:130–3.

    CAS  PubMed  Google Scholar 

  56. Wise SA, Phinney KW, Tai SS, Camara JE, Myers GL, Durazo-Arvizu R, et al. Baseline assessment of 25-hydroxyvitamin D assay performance: a Vitamin D Standardization Program (VDSP) Interlaboratory Comparison Study. J AOAC Int. 2017;100:1244–52.

    CAS  PubMed  Google Scholar 

  57. Cavalier E, Lukas P, Crine Y, Peeters S, Carlisi A, Le Goff C, et al. Evaluation of automated immunoassays for 25(OH)-vitamin D determination in different critical populations before and after standardization of the assays. Clin Chim Acta. 2014;431:60–5.

    CAS  PubMed  Google Scholar 

  58. Cavalier E, Lukas P, Bekaert AC, Carlisi A, Le Goff C, Delanaye P, et al. Analytical and clinical validation of the new Abbot Architect 25(OH)D assay: fit for purpose? Clin Chem Lab Med. 2017;55:378–84.

    CAS  PubMed  Google Scholar 

  59. Abou El Hassan M, Lin DCC, Earle T, Spencer M, Blasutig IM. Analytical evaluation of the BioPlex(R) 2200 25-OH vitamin D total assay. Clin Biochem. 2016;49:723–5.

    CAS  PubMed  Google Scholar 

  60. Al-Haddad FA, Rajab MH, Al-Qallaf SM, Musaiger AO, Hart KH. Assessment of vitamin D levels in newly diagnosed children with type 1 diabetes mellitus comparing two methods of measurement: a facility's experience in the Middle Eastern country of Bahrain. Diabetes Metab Syndr Obes. 2016;9:11–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Annema W, Nowak A, von Eckardstein A, Saleh L. Evaluation of the new restandardized Abbott Architect 25-OH Vitamin D assay in vitamin D-insufficient and vitamin D-supplemented individuals. J Clin Lab Anal. 2018;32:e22328.

    PubMed  Google Scholar 

  62. Berry DJ, Dutton J, Fraser WD, Jarvelin MR, Hypponen E. Harmonization study between LC-MS/MS and diasorin RIA for measurement of 25-hydroxyvitamin D concentrations in a large population survey. J Clin Lab Anal. 2017. https://doi.org/10.1002/jcla.22049.

    PubMed Central  Google Scholar 

  63. Cavalier E, Lukas P, Bekaert AC, Peeters S, Le Goff C, Yayo E, et al. Analytical and clinical evaluation of the new Fujirebio Lumipulse(R)G non-competitive assay for 25(OH)-vitamin D and three immunoassays for 25(OH)D in healthy subjects, osteoporotic patients, third trimester pregnant women, healthy African subjects, hemodialyzed and intensive care patients. Clin Chem Lab Med. 2016;54:1347–55.

    CAS  PubMed  Google Scholar 

  64. Dowling KG, Hull G, Sundvall J, Lamberg-Allardt C, Cashman KD. Improved accuracy of an tandem liquid chromatography-mass spectrometry method measuring 24R,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D metabolites in serum using unspiked controls and its application to determining cross-reactivity of a chemiluminescent microparticle immunoassay. J Chromatogr A. 2017;1497:102–9.

    CAS  PubMed  Google Scholar 

  65. Gorman S, Zafirau MZ, Lim EM, Clarke MW, Dhamrait G, Fleury N, et al. High-dose intramuscular vitamin D provides long-lasting moderate increases in serum 25-hydroxvitamin D levels and shorter-term changes in plasma calcium. J AOAC Int. 2017;100:1337–44.

    CAS  PubMed  Google Scholar 

  66. Ihara H, Kiuchi S, Ishige T, Nishimura M, Matsushita K, Satoh M, et al. Surveillance evaluation of the standardization of assay values for serum total 25-hydroxyvitamin D concentration in Japan. Ann Clin Biochem. 2018;55:647–56.

    CAS  PubMed  Google Scholar 

  67. Lee S, Kim JH, Kim SA, Sun YS, Lee A, Park SJ, et al. A rapid and simple liquid-chromatography-tandem mass spectrometry method for measuring 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human serum: comparison with two automated immunoassays. Ann Clin Lab Sci. 2016;46:645–53.

    CAS  PubMed  Google Scholar 

  68. Li L, Zeng Q, Yuan J, Xie Z. Performance evaluation of two immunoassays for 25-hydroxyvitamin D. J Clin Biochem Nutr. 2016;58:186–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nikooyeh B, Samiee SM, Farzami MR, Alavimajd H, Zahedirad M, Kalayi A, et al. Harmonization of serum 25-hydroxycalciferol assay results from high-performance liquid chromatography, enzyme immunoassay, radioimmunoassay, and immunochemiluminescence systems: a multicenter study. J Clin Lab Anal. 2017. https://doi.org/10.1002/jcla.22117.

    PubMed Central  Google Scholar 

  70. Scharla SH, Lempert UG. Evaluation of an automated competitive protein-binding assay for 25-hydroxyvitamin D. Clin Lab. 2016;62:1781–6.

    CAS  PubMed  Google Scholar 

  71. Spanaus K, von Eckardstein A. Evaluation of two fully automated immunoassay based tests for the measurement of 1alpha,25-dihydroxyvitamin D in human serum and comparison with LC-MS/MS. Clin Chem Lab Med. 2017;55:1305–14.

    CAS  PubMed  Google Scholar 

  72. Galior K, Ketha H, Grebe S, Singh RJ. 10 years of 25-hydroxyvitamin-D testing by LC-MS/MS-trends in vitamin-D deficiency and sufficiency. Bone Rep. 2018;8:268–73.

    PubMed  PubMed Central  Google Scholar 

  73. Dirks NF, Ackermans MT, Lips P, de Jongh RT, Vervloet MG, de Jonge R, et al. The when, what & how of measuring vitamin D metabolism in clinical medicine. Nutrients. 2018;10:E482.

    PubMed  Google Scholar 

  74. Perez-Lopez FR. Vitamin D: the secosteroid hormone and human reproduction. Gynecol Endocrinol. 2007;23:13–24.

    CAS  PubMed  Google Scholar 

  75. Perez-Lopez FR. Vitamin D and its implications for musculoskeletal health in women: an update. Maturitas. 2007;58:117–37.

    CAS  PubMed  Google Scholar 

  76. Omi K, Ando T, Sakyu T, Shirakawa T, Uchida Y, Oka A, et al. Noncompetitive immunoassay detection system for haptens on the basis of antimetatype antibodies. Clin Chem. 2015;61:627–35.

    CAS  PubMed  Google Scholar 

  77. The International Federation of Clinical Chemistry and Laboratory Medicine. Bone Metabolism (C-BM). http://www.ifcc.org/ifcc-scientific-division/sd-committees/c-bm/ (2019).

  78. Phinney KW, Sempos CT, Tai SS, Camara JE, Wise SA, Eckfeldt JH, et al. Baseline assessment of 25-hydroxyvitamin D reference material and proficiency testing/external quality assurance material commutability: a vitamin D standardization program study. J AOAC Int. 2017;100:1288–93.

    CAS  PubMed  Google Scholar 

  79. Sempos CT, Betz JM, Camara JE, Carter GD, Cavalier E, Clarke MW, et al. General steps to standardize the laboratory measurement of serum total 25-hydroxyvitamin D. J AOAC Int. 2017;100:1230–3.

    PubMed  Google Scholar 

  80. Rabenberg M, Scheidt-Nave C, Busch MA, Thamm M, Rieckmann N, Durazo-Arvizu RA, et al. Implications of standardization of serum 25-hydroxyvitamin D data for the evaluation of vitamin D status in Germany, including a temporal analysis. BMC Public Health. 2018;18:845.

    PubMed  PubMed Central  Google Scholar 

  81. Bjerg LN, Halgreen JR, Hansen SH, Morris HA, Jorgensen NR. An evaluation of total 25-hydroxyvitamin D assay standardization: where are we today? J Steroid Biochem Mol Biol. 2019;190:224–33.

    CAS  PubMed  Google Scholar 

  82. Erdman P, Palmer-Toy DE, Horowitz G, Hoofnagle A. Accuracy-based vitamin D survey: six years of quality improvement guided by proficiency testing. Arch Pathol Lab Med. 2019;143:1531–8.

    PubMed  Google Scholar 

  83. Elsenberg E, Ten Boekel E, Huijgen H, Heijboer AC. Standardization of automated 25-hydroxyvitamin D assays: how successful is it? Clin Biochem. 2017;50:1126–30.

    CAS  PubMed  Google Scholar 

  84. Ginsberg C, Katz R, de Boer IH, Kestenbaum BR, Chonchol M, Shlipak MG, et al. The 24,25 to 25-hydroxyvitamin D ratio and fracture risk in older adults: the cardiovascular health study. Bone. 2018;107:124–30.

    CAS  PubMed  Google Scholar 

  85. Tryfonidou MA, Oosterlaken-Dijksterhuis MA, Mol JA, van den Ingh TS, van den Brom WE, Hazewinkel HA. 24-Hydroxylase: potential key regulator in hypervitaminosis D3 in growing dogs. Am J Physiol Endocrinol Metab. 2003;284:E505–13.

    CAS  PubMed  Google Scholar 

  86. Berg AH, Powe CE, Evans MK, Wenger J, Ortiz G, Zonderman AB, et al. 24,25-Dihydroxyvitamin d3 and vitamin D status of community-dwelling black and white Americans. Clin Chem. 2015;61:877–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bosworth CR, Levin G, Robinson-Cohen C, Hoofnagle AN, Ruzinski J, Young B, et al. The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int. 2012;82:693–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365:410–21.

    CAS  PubMed  Google Scholar 

  89. Molin A, Baudoin R, Kaufmann M, Souberbielle JC, Ryckewaert A, Vantyghem MC, et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J Clin Endocrinol Metab. 2015;100:E1343–52.

    CAS  PubMed  Google Scholar 

  90. Ferraro PM, Minucci A, Primiano A, De Paolis E, Gervasoni J, Persichilli S, et al. A novel CYP24A1 genotype associated to a clinical picture of hypercalcemia, nephrolithiasis and low bone mass. Urolithiasis. 2017;45:291–4.

    CAS  PubMed  Google Scholar 

  91. Tai SS, Nelson MA. Candidate reference measurement procedure for the determination of (24R),25-dihydroxyvitamin D3 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2015;87:7964–70.

    CAS  PubMed  Google Scholar 

  92. Wise SA, Tai SS, Burdette CQ, Camara JE, Bedner M, Lippa KA, et al. Role of the National Institute of Standards and Technology (NIST) in support of the vitamin D initiative of the National Institutes of Health, Office of Dietary Supplements. J AOAC Int. 2017;100:1260–76.

    CAS  PubMed  Google Scholar 

  93. Peris P, Filella X, Monegal A, Guanabens N, Foj L, Bonet M, et al. Concordance between direct and indirect measurements of free 25-OH vitamin D. Clin Chim Acta. 2017;475:169–71.

    CAS  PubMed  Google Scholar 

  94. Malmstroem S, Rejnmark L, Imboden JB, Shoback DM, Bikle DD. Current assays to determine free 25-hydroxyvitamin D in serum. J AOAC Int. 2017;100:1323–7.

    CAS  PubMed  Google Scholar 

  95. Bailey D, Veljkovic K, Yazdanpanah M, Adeli K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin Biochem. 2013;46:190–6.

    CAS  PubMed  Google Scholar 

  96. Satoh M, Ishige T, Ogawa S, Nishimura M, Matsushita K, Higashi T, et al. Development and validation of the simultaneous measurement of four vitamin D metabolites in serum by LC-MS/MS for clinical laboratory applications. Anal Bioanal Chem. 2016;408:7617–27.

    CAS  PubMed  Google Scholar 

  97. Kvaskoff D, Ko P, Simila HA, Eyles DW. Distribution of 25-hydroxyvitamin D3 in dried blood spots and implications for its quantitation by tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;901:47–52.

    CAS  Google Scholar 

  98. Mathew EM, Moorkoth S, Rane PD, Lewis L, Rao P. Cost-effective HPLC-UV method for quantification of vitamin D2 and D3 in dried blood spot: a potential adjunct to newborn screening for prophylaxis of intractable paediatric seizures. Chem Pharm Bull (Tokyo). 2019;67:88–95.

    CAS  Google Scholar 

  99. Heath AK, Williamson EJ, Ebeling PR, Kvaskoff D, Eyles DW, English DR. Measurements of 25-hydroxyvitamin D concentrations in archived dried blood spots are reliable and accurately reflect those in plasma. J Clin Endocrinol Metab. 2014;99:3319–24.

    CAS  PubMed  Google Scholar 

  100. Makowski AJ, Rathmacher JA, Horst RL, Sempos CT. Simplified 25-hydroxyvitamin D standardization and optimization in dried blood spots by LC-MS/MS. J AOAC Int. 2017;100:1328–36.

    CAS  PubMed  Google Scholar 

  101. Jensen BP, Saraf R, Ma J, Berry S, Grant CC, Camargo CA Jr, et al. Quantitation of 25-hydroxyvitamin D in dried blood spots by 2D LC-MS/MS without derivatization and correlation with serum in adult and pediatric studies. Clin Chim Acta. 2018;481:61–8.

    CAS  PubMed  Google Scholar 

  102. Man PW, Heijboer AC, van der Meer IM, Lin W, Numans ME, Lips P, et al. Agreement between measurement of 25-hydroxyvitamin D3 in dried blood spot samples and serum in a Chinese population in the Netherlands. J Steroid Biochem Mol Biol. 2019;195:105472.

    CAS  PubMed  Google Scholar 

  103. Eyles D, Anderson C, Ko P, Jones A, Thomas A, Burne T, et al. A sensitive LC/MS/MS assay of 25OH vitamin D3 and 25OH vitamin D2 in dried blood spots. Clin Chim Acta. 2009;403:145–51.

    CAS  PubMed  Google Scholar 

  104. Kidney Disease: Improving Global Outcomes CKD-MBD Update Working Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl (2011). 2017;7:1–59.

    Google Scholar 

  105. Grant WB, Karras SN, Bischoff-Ferrari HA, Annweiler C, Boucher BJ, Juzeniene A, et al. Do studies reporting ‘U’-shaped serum 25-hydroxyvitamin D-health outcome relationships reflect adverse effects? Dermatoendocrinology. 2016;8:e1187349.

    Google Scholar 

  106. Annweiler C, Duval G, Launay CP. Estimating vitamin D status and the choice of supplementation dose. JAMA Intern Med. 2016;176:865.

    PubMed  Google Scholar 

  107. Weaver CM, Bischoff-Ferrari HA, Shanahan CJ. Cost-benefit analysis of calcium and vitamin D supplements. Arch Osteoporos. 2019;14:50.

    PubMed  PubMed Central  Google Scholar 

  108. van der Velde RY, Brouwers JR, Geusens PP, Lems WF, van den Bergh JP. Calcium and vitamin D supplementation: state of the art for daily practice. Food Nutr Res. 2014;58 https://doi.org/10.3402/fnr.v58.21796.

    Google Scholar 

  109. Bolek-Berquist J, Elliott ME, Gangnon RE, Gemar D, Engelke J, Lawrence SJ, et al. Use of a questionnaire to assess vitamin D status in young adults. Public Health Nutr. 2009;12:236–43.

    PubMed  Google Scholar 

  110. Gagnon C, Baillargeon JP, Desmarais G, Fink GD. Prevalence and predictors of vitamin D insufficiency in women of reproductive age living in northern latitude. Eur J Endocrinol. 2010;163:819–24.

    CAS  PubMed  Google Scholar 

  111. Formiga F, Ferrer A, Almeda J, San Jose A, Gil A, Pujol R. Utility of geriatric assessment tools to identify 85-years old subjects with vitamin D deficiency. J Nutr Health Aging. 2011;15:110–4.

    CAS  PubMed  Google Scholar 

  112. Hacker-Thompson A, Schloetter M, Sellmeyer DE. Validation of a dietary vitamin D questionnaire using multiple diet records and the block 98 health habits and history questionnaire in healthy postmenopausal women in northern California. J Acad Nutr Diet. 2012;112:419–23.

    PubMed  Google Scholar 

  113. Annweiler C, Schott AM, Beauchet O. Proposal and validation of a quick question to rate the influence of sun exposure in geriatric epidemiological studies on vitamin D. Int J Vitam Nutr Res. 2012;82:412–6.

    CAS  PubMed  Google Scholar 

  114. Tsagari A, Toulis KA, Makras P, Skagias K, Galanos A, Lyritis G. Performance of the mini nutritional assessment score in the detection of vitamin D status in an elderly Greek population. Horm Metab Res. 2012;44:896–9.

    CAS  PubMed  Google Scholar 

  115. Chevallereau G, Gleyses X, Roussel L, Hamdan S, Beauchet O, Annweiler C. Proposal and validation of a quick question to rate the influence of diet in geriatric epidemiological studies on vitamin d. Int J Vitam Nutr Res. 2013;83:254–8.

    CAS  PubMed  Google Scholar 

  116. Nabak AC, Johnson RE, Keuler NS, Hansen KE. Can a questionnaire predict vitamin D status in postmenopausal women? Public Health Nutr. 2014;17:739–46.

    PubMed  Google Scholar 

  117. Hamdan S, Roussel L, Gleyses X, Chevallereau G, Schott AM, Beauchet O, et al. Detection of hypovitaminosis D in older adults: a classification tree analysis. J Am Geriatr Soc. 2014;62:1193–5.

    PubMed  Google Scholar 

  118. Annweiler C, Kabeshova A, Legeay M, Fantino B, Beauchet O. Derivation and validation of a clinical diagnostic tool for the identification of older community-dwellers with hypovitaminosis D. J Am Med Dir Assoc. 2015;16:536 e8–19.

    Google Scholar 

  119. Deschasaux M, Souberbielle JC, Andreeva VA, Sutton A, Charnaux N, Kesse-Guyot E, et al. Quick and easy screening for vitamin D insufficiency in adults: a scoring system to be implemented in daily clinical practice. Medicine (Baltimore). 2016;95:e2783.

    CAS  Google Scholar 

  120. Chevallereau G, Legeay M, Duval GT, Karras SN, Fantino B, Annweiler C. Profiling older community-dwellers with hypovitaminosis D: a classification tree analysis. Int J Vitam Nutr Res. 2019;1–5.

  121. Annweiler C, Riou J, Alessandri A, Gicquel D, Henni S, Feart C, et al. Clinical identification of geriatric patients with hypovitaminosis D: the ‘Vitamin D Status Predictor for Geriatrics’ Study. Nutrients. 2017;9:E658.

    PubMed  Google Scholar 

  122. Annweiler C, Kabeshova A, Callens A, Paty ML, Duval GT, Holick MF. Self-administered Vitamin D status predictor: older adults are able to use a self-questionnaire for evaluating their vitamin D status. PLoS ONE. 2017;12:e0186578.

    PubMed  PubMed Central  Google Scholar 

  123. Annweiler C, Legrand E, Souberbielle JC. Vitamin D in adults: update on testing and supplementation. Geriatr Psychol Neuropsychiatr Vieil. 2018;16:7–22.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BA and AC designed the study. BA, EC, HPB, FRP-L, MTL-B, GRP-R, PC, CA, SDC, SZ, MH and AF performed the literature search, screening potentially eligible studies, extracting and analyzing data, interpreting results, and contributed to the writing of the article. BA, FRP-L, MTL-B, GRP-R, PC, CA, SZ and MH prepared the tables. MFH contributed to the abstract and wrote the conclusion. BA, AC and MFH critically revised the article for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Barbara Altieri.

Ethics declarations

Conflict of interest

EC has consulted for DiaSorin, IDS, Fujirebio, and bioMérieux. MFH is a consultant for Quest Diagnostics Inc. MH collaborated in research projects of DiaSorin, Fujirebio, and Roche and received honoraria for scientific presentations from DiaSorin, SIEMENS, and Roche. The other co-authors declare no potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altieri, B., Cavalier, E., Bhattoa, H.P. et al. Vitamin D testing: advantages and limits of the current assays. Eur J Clin Nutr 74, 231–247 (2020). https://doi.org/10.1038/s41430-019-0553-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-019-0553-3

This article is cited by

Search

Quick links