Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fatty acids and cardiometabolic health: a review of studies in Chinese populations

Abstract

Rapid nutrition transition from plant-based traditional diet to westernized diet has led to dramatically heightening burdens of cardiometabolic diseases in China in past decades. Recently, national surveys reported that poor dietary quality including low marine n-3 fatty acids and high intakes of red meat and processed meat was associated with considerably elevated cardiometabolic deaths. Previous studies mainly from Western population-based cohorts have indicated that not only fat quantity but also quality linked with different cardiometabolic outcomes. Compared with Western peoples, Asian peoples, including Chinese, are known to have different dietary patterns and lifestyle, as well as genetic heterogeneities, which may modify fatty acid metabolism and disease susceptibility in certain degree. To date, there were limited prospective studies investigating the relationships between fatty acids and cardiometabolic disease outcomes in Chinese, and most existing studies were cross-sectional nature and within one or two region(s). Notably, shifting dietary patterns could change not only amount, types, and ratio of fatty acids accounting for overall energy intake, but also their food sources and ratio to other macronutrients. Moreover, large geographic and urban-rural variations in prevalence of cardiometabolic diseases among Chinese may also reflect the effects of socioeconomic development and local diets on health status. Therefore, current review will summarize available literatures with more focus on the Chinese-based studies which may extend current knowledge about the roles of fatty acids in pathogenesis of cardiometabolic diseases for Asian populations and also provide useful information for trans-ethnic comparisons with other populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The categories, major food sources, and diseases associations of different fatty acids.

Similar content being viewed by others

References

  1. He Y, Li Y, Yang X, Hemler EC, Fang Y, Zhao L, et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982–2012: a cross-sectional population-based study. Lancet Diabetes Endocrinol. 2019;7:540–8.

    PubMed  Google Scholar 

  2. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394:1145–58.

    PubMed  PubMed Central  Google Scholar 

  3. Shen X, Fang A, He J, Liu Z, Guo M, Gao R, et al. Trends in dietary fat and fatty acid intakes and related food sources among Chinese adults: A longitudinal study from the China Health and Nutrition Survey (1997-2011). Public Health Nutr. 2017;20:2927–36.

    PubMed  Google Scholar 

  4. Liu AD, Li JW, Liu ZP, Zhou PP, Mao WF, Li N, et al. Trans fatty acid levels in foods and intakes among population aged 3 years and above in Beijing and Guangzhou Cities, China. Biomed Environ Sci. 2015;28:477–85.

    CAS  PubMed  Google Scholar 

  5. Hensrud DD, Heimburger DC, Chen J, Parpia B. Antioxidant status, erythrocyte fatty acids, and mortality from cardiovascular disease and Keshan disease in China. Eur J Clin Nutr. 1994;48:455–64.

    CAS  PubMed  Google Scholar 

  6. Hellerstein MK, Schwarz J-M, Neese RA. Regulation of Hepatic De Novo Lipogenesis in Humans. Annu Rev Nutr. 1996;16:523–57.

    CAS  PubMed  Google Scholar 

  7. Zong G, Zhu J, Sun L, Ye X, Lu L, Jin Q, et al. Associations of erythrocyte fatty acids in the de novo lipogenesis pathway with risk of metabolic syndrome in a cohort study of middle-aged and older Chinese. Am J Clin Nutr. 2013;98:319–26.

    CAS  PubMed  Google Scholar 

  8. Kroger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Doring F, et al. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Am J Clin Nutr. 2011;93:127–42.

    PubMed  Google Scholar 

  9. Erdman JW, MacDonald IA, Zeisel SH. Present knowledge in nutrition. Tenth Edition. Wiley-Blackwell: Iowa; 2012. https://doi.org/10.1002/9781119946045.

  10. Xiang M, Rahman MA, Ai H, Li X, Harbige LS. Diet and gene expression: delta-5 and delta-6 desaturases in healthy Chinese and European subjects. Ann Nutr Metab. 2006;50:492–8.

    CAS  PubMed  Google Scholar 

  11. Slavin J. Dietary guidelines: are we on the right path? 2012. https://doi.org/10.1097/NT.0b013e31826c50af.

  12. Zhu Z, Wu C, Luo B, Zang J, Wang Z, Guo C, et al. The dietary intake and its features across four seasons in the metropolis of China. J Nutr Sci Vitaminol (Tokyo). 2019;65:52–59.

    CAS  Google Scholar 

  13. Wang L, Xiang Z, Stevanovic S, Ristovski Z, Salimi F, Gao J, et al. Role of Chinese cooking emissions on ambient air quality and human health. Sci Total Environ. 2017;589:173–81.

    CAS  PubMed  Google Scholar 

  14. Chang J, Wang Y. Report of Chinese residents of nutrition and health surveillance 2010-2013. Beijing: Peking University Medical Press; 2016.

    Google Scholar 

  15. Hu Y, Li H, Lu L, Manichaikul A, Zhu J, Chen IYDer, et al. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in chinese and european-ancestry populations. Hum Mol Genet. 2015;25:1215–24.

    Google Scholar 

  16. Li H, Gan W, Lu L, Dong X, Han X, Hu C, et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes. 2013;62:291–8.

    CAS  PubMed  Google Scholar 

  17. Luo JQ, Ren H, Liu MZ, Fang PF, Xiang DX. European versus Asian differences for the associations between paraoxonase-1 genetic polymorphisms and susceptibility to type 2 diabetes mellitus. J Cell Mol Med. 2018;22:1720–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47:699–713.

    CAS  PubMed  Google Scholar 

  19. Li Y, Ding J, Wang Y, Tang C, Zhang P. Nutrition-related mobile apps in the China App Store: assessment of functionality and quality. JMIR mHealth uHealth. 2019;7:e13261.

    PubMed  PubMed Central  Google Scholar 

  20. Mensink RP, Zock PL, Kester ADM, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.

    CAS  PubMed  Google Scholar 

  21. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, et al. Dietary fat intake and the risk of coronary heart disease in women. N. Engl J Med. 1997;337:1491–9.

    CAS  PubMed  Google Scholar 

  22. Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, et al. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001;73:1019–26.

    CAS  PubMed  Google Scholar 

  23. van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25:417–24.

    PubMed  Google Scholar 

  24. Meyer KA, Kushi LH, Jacobs DRJ, Folsom AR. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care. 2001;24:1528–35.

    CAS  PubMed  Google Scholar 

  25. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014;2:810–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamagishi K, Nettleton JA, Folsom AR. Plasma fatty acid composition and incident heart failure in middle-aged adults: the Atherosclerosis risk in communities (ARIC) study. Am Heart J. 2008;156:965–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma W, Wu JHY, Wang Q, Lemaitre RN, Mukamal KJ, Djousse L, et al. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study. Am J Clin Nutr. 2015;101:153–63.

    CAS  PubMed  Google Scholar 

  28. Khaw K-T, Friesen MD, Riboli E, Luben R, Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-norfolk prospective study. PLoS Med. 2012;9:e1001255.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86:189–97.

    CAS  PubMed  Google Scholar 

  30. de Oliveira Otto MC, Nettleton JA, Lemaitre RN, Steffen LM, Kromhout D, Rich SS, et al. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2:e000092.

    PubMed  PubMed Central  Google Scholar 

  31. Yakoob MY, Shi P, Willett WC, Rexrode KM, Campos H, Orav EJ, et al. Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation. 2016;133:1645–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Malik VS, Chiuve SE, Campos H, Rimm EB, Mozaffarian D, Hu FB, et al. Circulating very-long-chain saturated fatty acids and incident coronary heart disease in US men and women. Circulation. 2015;132:260–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lemaitre RN, McKnight B, Sotoodehnia N, Fretts AM, Qureshi WT, Song X, et al. Circulating very long-chain saturated fatty acids and heart failure: the cardiovascular health study. J Am Heart Assoc. 2018;7:e010019.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhuang P, Cheng L, Wang J, Zhang Y, Jiao J. Saturated fatty acid intake is associated with total mortality in a nationwide cohort study. J Nutr. 2019;149:68–77.

    PubMed  Google Scholar 

  35. Yang B, Ding F, Yan J, Ye XW, Xu XL, Wang FL, et al. Exploratory serum fatty acid patterns associated with blood pressure in community-dwelling middle-aged and elderly Chinese. Lipids Health Dis. 2016;15:58.

    PubMed  PubMed Central  Google Scholar 

  36. Yang B, Ding F, Wang FL, Yan J, Ye XW, Yu W, et al. Association of serum fatty acid and estimated desaturase activity with hypertension in middle-aged and elderly Chinese population. Sci Rep. 2016;6:23446.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chien KL, Chao CL, Kuo CH, Lin HJ, Liu PH, Chen PR, et al. Plasma fatty acids and the risk of metabolic syndrome in ethnic Chinese adults in Taiwan. Lipids Health Dis. 2011;10:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin JS, Dong HL, Chen GD, Chen ZY, Dong XW, Zheng JS, et al. Erythrocyte saturated fatty acids and incident type 2 diabetes in chinese men and women: a prospective cohort study. Nutrients. 2018;10. https://doi.org/10.3390/nu10101393.

  39. Sun Y, Koh HWL, Choi H, Koh WP, Yuan JM, Newman JW, et al. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese Health Study. J Lipid Res. 2016;57:1300–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zong G, Li Y, Sampson L, Dougherty LW, Willett WC, Wanders AJ, et al. Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. Am J Clin Nutr. 2018;107:445–53.

    PubMed  PubMed Central  Google Scholar 

  41. Mao L, Zhang Y, Wang W, Zhuang P, Wu F, Jiao J. Plant-sourced and animal-sourced monounsaturated fatty acid intakes in relation to mortality: a prospective nationwide cohort study. Eur J Nutr. 2019. https://doi.org/10.1007/s00394-019-02048-8.

  42. Guasch-Ferré M, Zong G, Willett WC, Zock PL, Wanders AJ, Hu FB, et al. Associations of monounsaturated fatty acids from plant and animal sources with total and cause-specific mortality in two US prospective cohort studies. Circ Res. 2019;124:1266–75.

    PubMed  PubMed Central  Google Scholar 

  43. Due A, Larsen TM, Hermansen K, Stender S, Holst JJ, Toubro S, et al. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets. Am J Clin Nutr. 2008;87:855–62.

    CAS  PubMed  Google Scholar 

  44. Yamagishi K, Folsom AR, Steffen LM. Plasma fatty acid composition and incident ischemic stroke in middle-aged adults: The Atherosclerosis Risk in Communities (ARIC) study. Cerebrovasc Dis. 2013;36:38–46.

    CAS  PubMed  Google Scholar 

  45. Djoussé L, Matthan NR, Lichtenstein AH, Gaziano JM. Red blood cell membrane concentration of cis-palmitoleic and cis-vaccenic acids and risk of coronary heart disease. Am J Cardiol. 2012;110:539–44.

    PubMed  PubMed Central  Google Scholar 

  46. Steffen BT, Duprez D, Szklo M, Guan W, Tsai MY. Circulating oleic acid levels are related to greater risks of cardiovascular events and all-cause mortality: the Multi-Ethnic Study of atherosclerosis. J Clin Lipido. 2018;12:1404–12.

    Google Scholar 

  47. Delgado GE, Kramer BK, Lorkowski S, Marz W, von Schacky C, Kleber ME. Individual omega-9 monounsaturated fatty acids and mortality-the ludwigshafen risk and cardiovascular health study. J Clin Lipido. 2017;11:126–135.e5.

    Google Scholar 

  48. Zong G, Ye X, Sun L, Li H, Yu Z, Hu FB, et al. Associations of erythrocyte palmitoleic acid with adipokines, inflammatory markers, and the metabolic syndrome in middle-aged and older Chinese. Am J Clin Nutr. 2012;96:970–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng Ffang, Chen Zyong, Zheng JS, Lin Jsheng, Li Yhong, Qiu R, et al. Association between erythrocyte fatty acids in de novo lipogenesis pathway and DXA-derived body fat and trunk fat distribution in Chinese adults: a prospective study. Eur J Nutr. 2019;58:3229–39.

    CAS  PubMed  Google Scholar 

  50. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136:e1–e23.

    PubMed  Google Scholar 

  51. Siscovick DS, Barringer TA, Fretts AM, Wu JHY, Lichtenstein AH, Costello RB, et al. Omega-3 polyunsaturated fatty acid (Fish Oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2017;135:e867–e884.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaushik M, Mozaffarian D, Spiegelman D, Manson JE, Willett WC, Hu FB. Long-chain omega-3 fatty acids, fish intake, and the risk of type 2 diabetes mellitus. Am J Clin Nutr. 2009;90:613–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Djousse L, Gaziano JM, Buring JE, Lee I-M. Dietary omega-3 fatty acids and fish consumption and risk of type 2 diabetes. Am J Clin Nutr. 2011;93:143–50.

    CAS  PubMed  Google Scholar 

  54. Wu JHY, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107:S214–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilk JB, Tsai MY, Hanson NQ, Gaziano JM, Djousse L. Plasma and dietary omega-3 fatty acids, fish intake, and heart failure risk in the Physicians’ Health Study. Am J Clin Nutr. 2012;96:882–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: the EPIC-interact case-cohort study. PLoS Med. 2016;13:1–17.

    Google Scholar 

  57. Djoussé L, Biggs ML, Lemaitre RN, King IB, Song X, Ix JH, et al. Plasma omega-3 fatty acids and incident diabetes in older adults. Am J Clin Nutr. 2011;94:527–33.

    PubMed  PubMed Central  Google Scholar 

  58. Sun Q, Ma J, Campos H, Rexrode KM, Albert CM, Mozaffarian D, et al. Blood concentrations of individual long-chain n-3 fatty acids and risk of nonfatal myocardial infarction. Am J Clin Nutr. 2008;88:216–23.

    CAS  PubMed  Google Scholar 

  59. Mozaffarian D, Lemaitre RN, King IB, Song X, Huang H, Sacks FM, et al. Plasma phospholipid long-chain ω-3 fatty acids and total and cause-specific mortality in older adults, a cohort study. Ann Intern Med. 2013;158:515–25.

    PubMed  PubMed Central  Google Scholar 

  60. de Oliveira Otto MC, Wu JHY, Baylin A, Vaidya D, Rich SS, Tsai MY, et al. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2:e000506.

    PubMed  PubMed Central  Google Scholar 

  61. Saber H, Yakoob MY, Shi P, Longstreth WT, Lemaitre RN, Siscovick D, et al. Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke. 2017;48:2678–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Block RC, Liu L, Herrington DM, Huang S, Tsai MY, O’Connell TD, et al. Predicting Risk for Incident Heart Failure With Omega-3 Fatty Acids: From MESA. JACC Hear Fail. 2019;7:651–61.

    Google Scholar 

  63. Harris WS, Tintle NL, Ramachandran VS. Erythrocyte n-6 fatty acids and risk for cardiovascular outcomes and total mortality in the framingham heart study. Nutrients. 2018;10. https://doi.org/10.3390/nu10122012.

  64. Matsumoto C, Matthan NR, Wilk JB, Lichtenstein AH, Michael Gaziano J, Djoussé L. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study. Br J Nutr. 2013;109:2044–9.

    CAS  PubMed  Google Scholar 

  65. Virtanen JK, Mursu J, Voutilainen S, Uusitupa M, Tuomainen TP. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: The kuopio ischemic heart disease risk factor study. Diabetes Care. 2014;37:189–96.

    CAS  PubMed  Google Scholar 

  66. Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, et al. Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association nutrition subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidem. Circulation. 2009;119:902–7.

    PubMed  Google Scholar 

  67. Wu JHY, Lemaitre RN, King IB, Song X, Psaty BM, Siscovick DS, et al. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the cardiovascular health study. Circulation. 2014;130:1245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw KT, Wareham NJ, et al. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk c. Am J Clin Nutr. 2010;92:1214–22.

    CAS  PubMed  Google Scholar 

  69. Marklund M, Wu JHY, Imamura F, Del Gobbo LC, Fretts A, De Goede J, et al. Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: an individual-level pooled analysis of 30 cohort studies. Circulation. 2019;139:2422–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang L, Folsom AR, Zheng Z-J, Pankow JS, Eckfeldt JH. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) study. Am J Clin Nutr. 2003;78:91–98.

    CAS  PubMed  Google Scholar 

  71. Jackson KH, Harris WS. Blood fatty acid profiles: new biomarkers for cardiometabolic disease risk. Curr Atheroscler Rep. 2018;20:22.

    PubMed  Google Scholar 

  72. Gibson RA. Musings about the role dietary fats after 40 years of fatty acid research. Prostaglandins Leukot Ess Fat Acids. 2018;131:1–5.

    CAS  Google Scholar 

  73. Takata Y, Zhang X, Li H, Gao YT, Yang G, Gao J, et al. Fish intake and risks of total and cause-specific mortality in 2 population-based cohort studies of 134,296 men and women. Am J Epidemiol. 2013;178:46–57.

    PubMed  PubMed Central  Google Scholar 

  74. Koh AS, Pan A, Wang R, Odegaard AO, Pereira MA, Yuan JM, et al. The association between dietary omega-3 fatty acids and cardiovascular death: the Singapore Chinese Health Study. Eur J Prev Cardiol. 2015;22:364–72.

    PubMed  Google Scholar 

  75. Zhuang P, Wang W, Wang J, Zhang Y, Jiao J. Polyunsaturated fatty acids intake, omega-6/omega-3 ratio and mortality: findings from two independent nationwide cohorts. Clin Nutr. 2019;38:848–55.

    CAS  PubMed  Google Scholar 

  76. Zhang Y, Zhuang P, Mao L, Chen X, Wang J, Cheng L, et al. Current level of fish and omega-3 fatty acid intakes and risk of Type 2 diabetes in China. J Nutr Biochem. 2019;74:108249.

    CAS  PubMed  Google Scholar 

  77. Villegas R, Xiang Y-B, Elasy T, Li H-L, Yang G, Cai H, et al. Fish, shellfish, and long-chain n-3 fatty acid consumption and risk of incident type 2 diabetes in middle-aged Chinese men and women. Am J Clin Nutr. 2011;94:543–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brostow DP, Odegaard AO, Koh WP, Duval S, Gross MD, Yuan JM, et al. Omega-3 fatty acids and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr. 2011;94:520–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang T, Sun J, Chen Y, Xie H, Xu D, Huang J, et al. Genetic variants in desaturase gene, erythrocyte fatty acids, and risk for type 2 diabetes in Chinese Hans. Nutrition. 2014;30:897–902.

    CAS  PubMed  Google Scholar 

  80. Han LDA, Xia JF, Liang QL, Wang Y, Wang YM, Hu P, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689:85–91.

    CAS  PubMed  Google Scholar 

  81. Huang T, Bhulaidok S, Cai Z, Xu T, Xu F, Wahlqvist ML, et al. Plasma phospholipids n-3 polyunsaturated fatty acid is associated with metabolic syndrome. Mol Nutr Food Res. 2010;54:1628–35.

    CAS  PubMed  Google Scholar 

  82. Yu Y, Cai Z, Zheng J, Chen J, Zhang X, Huang XF, et al. Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr Res. 2012;32:71–77.

    CAS  PubMed  Google Scholar 

  83. Dai Xwei, Chen Yming, Zeng Ffang, Sun Lli, Chen Cgang, Su Yxiang. Association between n-3 polyunsaturated fatty acids in erythrocytes and metabolic syndrome in Chinese men and women. Eur J Nutr. 2016;55:981–9.

    CAS  PubMed  Google Scholar 

  84. Huang T, Wahlqvist ML, Xu T, Xu A, Zhang A, Li D. Increased plasma n-3 polyunsaturated fatty acid is associated with improved insulin sensitivity in type 2 diabetes in China. Mol Nutr Food Res. 2010;54:S112–9.

    CAS  PubMed  Google Scholar 

  85. Huang T, Asimi S, Lou D, Li D. Plasma phospholipid polyunsaturated fatty acids and homocysteine in Chinese type 2 diabetes patients. Asia Pac J Clin Nutr. 2012;21:394–9.

    CAS  PubMed  Google Scholar 

  86. Dai Xwei, Zhang B, Wang P, Chen Cgang, Chen Yming, Su Yxiang. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. Atherosclerosis. 2014;232:79–85.

    CAS  PubMed  Google Scholar 

  87. Zeng F, Sun L, Liu Y, Xu Y, Guan K, Ling W, et al. Higher erythrocyte n–3 PUFas are associated with decreased blood pressure in middle-aged and elderly chinese adults. J Nutr. 2014;144:1240–6.

    CAS  PubMed  Google Scholar 

  88. Liu W, Xie X, Liu M, Zhang J, Liang W, Chen X. Serum ω-3 polyunsaturated fatty acids and potential influence factors in elderly patients with multiple cardiovascular risk factors. Sci Rep. 2018;8:1102.

    PubMed  PubMed Central  Google Scholar 

  89. Zheng JS, Lin Jsheng, Dong Hli, Zeng Ffang, Li D, Song Y, et al. Association of erythrocyte n-3 polyunsaturated fatty acids with incident type 2 diabetes in a Chinese population. Clin Nutr. 2019;38:2195–201.

    CAS  PubMed  Google Scholar 

  90. Sun Y, Koh W-P, Yuan J-M, Choi H, Su J, Ong CN, et al. Plasma α-linolenic and long-chain ω-3 fatty acids are associated with a lower risk of acute myocardial infarction in singapore chinese adults. J Nutr. 2016;146:275–82.

    CAS  PubMed  Google Scholar 

  91. Zhang G, Sun Q, Hu FB, Ye X, Yu Z, Zong G, et al. Erythrocyte n-3 fatty acids and metabolic syndrome in middle-aged and older Chinese. J Clin Endocrinol Metab. 2012;97:E973–7.

    CAS  PubMed  Google Scholar 

  92. Ma Y, Sun L, Li J, Hu Y, Gan Z, Zong G, et al. Erythrocyte PUFAs, circulating acylcarnitines, and metabolic syndrome risk: a prospective study in Chinese. J Lipid Res. 2019;60:421–9.

    CAS  PubMed  Google Scholar 

  93. Yang B, Shi MQ, Li ZH, Shi L, Wang AM, Guo XJ, et al. Effects of n-3 fatty acid supplements on cardiometabolic profiles in hypertensive patients with abdominal obesity in Inner Mongolia: a randomized controlled trial. Food Funct. 2019;10:1661–70.

    CAS  PubMed  Google Scholar 

  94. Yang B, Shi L, Wang AM, Shi MQ, Li ZH, Zhao F, et al. Lowering effects of n-3 fatty acid supplements on blood pressure by reducing plasma angiotensin II in inner mongolia hypertensive patients: a double-blind randomized controlled trial. J Agric Food Chem. 2019;67:184–92.

    CAS  PubMed  Google Scholar 

  95. Su TC, Hwang JJ, Huang KC, Chiang FT, Chien KL, Wang KY, et al. A randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of ethyl-ester omega-3 fatty acid in Taiwanese hypertriglyceridemic patients. J Atheroscler Thromb. 2017;24:275–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng JS, Lin M, Fang L, Yu Y, Yuan L, Jin Y, et al. Effects of n-3 fatty acid supplements on glycemic traits in Chinese type 2 diabetic patients: a double-blind randomized controlled trial. Mol Nutr Food Res. 2016;60:2176–84.

    CAS  PubMed  Google Scholar 

  97. Zeng Q, Dong SY, Liu YP, Fu J, Shuai P, Zhao ZM, et al. Effects of fish oil-derived fatty acids on suboptimal cardiovascular health: A multicenter, randomized, double-blind, placebo-controlled trial. Nutr Metab Cardiovasc Dis. 2017;27:964–70.

    CAS  PubMed  Google Scholar 

  98. Lin Z, Chen R, Jiang Y, Xia Y, Niu Y, Wang C, et al. Cardiovascular benefits of fish-oil supplementation against fine particulate air pollution in China. J Am Coll Cardiol. 2019;73:2076–85.

    CAS  PubMed  Google Scholar 

  99. Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr. 2009;63:S5–S21.

    CAS  PubMed  Google Scholar 

  100. Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, et al. Intake of trans fatty acids and risk of coronary heart disease among women. Lancet. 1993;341:581–5.

    CAS  PubMed  Google Scholar 

  101. Ascherio A, Rimm EB, Giovannucci EL, Spiegelman D, Stampfer M, Willett WC. Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. Br Med J. 1996;313:84–90.

    CAS  Google Scholar 

  102. Pietinen P, Ascherio A, Korhonen P, Hartman AM, Willett WC, Albanes D, et al. Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene cancer prevention study. Am J Epidemiol. 1997;145:876–87.

    CAS  PubMed  Google Scholar 

  103. Christiansen E, Schnider S, Palmvig B, Tauber-Lassen E, Pedersen O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids: Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care. 1997;20:881–7.

    CAS  PubMed  Google Scholar 

  104. Vega-López S, Ausman LM, Jalbert SM, Erkkilä AT, Lichtenstein AH. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am J Clin Nutr. 2006;84:54–62.

    PubMed  Google Scholar 

  105. Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP, et al. Effects of diets enriched in saturated (Palmitic), monounsaturated (Oleic), or trans (Elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care. 2002;25:1283–8.

    CAS  PubMed  Google Scholar 

  106. Bendsen NT, Haugaard SB, Larsen TM, Chabanova E, Stender S, Astrup A. Effect of trans-fatty acid intake on insulin sensitivity and intramuscular lipids—a randomized trial in overweight postmenopausal women. Metabolism. 2011;60:906–13.

    CAS  PubMed  Google Scholar 

  107. Brouwer IA, Wanders AJ, Katan MB. Trans fatty acids and cardiovascular health: research completed? Eur J Clin Nutr. 2013;67:541–7.

    CAS  PubMed  Google Scholar 

  108. Gebauer SK, Destaillats F, Dionisi F, Krauss RM, Baer DJ. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial. Am J Clin Nutr. 2015;102:1339–46.

    CAS  PubMed  Google Scholar 

  109. Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, Rea TD, Kuller LH, et al. Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults: the cardiovascular health study. Circulation. 2006;114:209–15.

    CAS  PubMed  Google Scholar 

  110. Sun Q, Ma J, Campos H, Hankinson SE, Manson JE, Stampfer MJ, et al. A prospective study of trans fatty acids in erythrocytes and risk of coronary heart disease. Circulation. 2007;115:1858–65.

    CAS  PubMed  Google Scholar 

  111. Wang Q, Imamura F, Ma W, Wang M, Lemaitre RN, King IB, et al. Circulating and dietary trans fatty acids and incident type 2 diabetes in older adults: the cardiovascular health study. Diabetes Care. 2015;38:1099–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tokede OA, Petrone AB, Hanson NQ, Tsai MY, Weir NA, Glynn RJ, et al. Plasma phospholipid trans fatty acids and risk of heart failure. Am J Clin Nutr. 2013;97:698–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann Intern Med. 2010;153:790–9.

    PubMed  PubMed Central  Google Scholar 

  114. Kleber ME, Delgado GE, Lorkowski S, Marz W, von Schacky C. Trans-fatty acids and mortality in patients referred for coronary angiography: the Ludwigshafen Risk and Cardiovascular Health Study. Eur Heart J. 2016;37:1072–8.

    CAS  PubMed  Google Scholar 

  115. Yu DX, Sun Q, Ye XW, Pan A, Zong G, Zhou YH, et al. Erythrocyte trans-fatty acids, type 2 diabetes and cardiovascular risk factors in middle-aged and older Chinese individuals. Diabetologia. 2012;55:2954–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zong G, Sun Q, Yu D, Zhu J, Sun L, Ye X, et al. Dairy consumption, type 2 diabetes, and changes in cardiometabolic traits: a prospective cohort study of middle-aged and older chinese in beijing and shanghai. Diabetes Care. 2014;37:56–63.

    CAS  PubMed  Google Scholar 

  117. Villegas R, Gao YT, Dai Q, Yang G, Cai H, Li H, et al. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: the Shanghai women’s Health Study. Am J Clin Nutr. 2009;89:1059–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu JHY, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ Cardiovasc Genet. 2013;6:171–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, et al. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham Heart Offspring Study. Prostaglandins Leukot Ess Fat Acids. 2015;94:65–72.

    CAS  Google Scholar 

  120. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study. PLoS Genet. 2009;5:e1000338.

    PubMed  PubMed Central  Google Scholar 

  121. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid N-3 fatty acids: A Meta-Analysis of Genome-Wide association studies from the charge consortium. PLoS Genet. 2011;7:e1002193.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Guan W, Steffen BT, Lemaitre RN, Wu JHY, Tanaka T, Manichaikul A, et al. Genome-Wide association study of plasma n6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. Circ Cardiovasc Genet. 2014;7:321–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mozaffarian D, Kabagambe EK, Johnson CO, Lemaitre RN, Manichaikul A, Sun Q, et al. Genetic loci associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association studies from the CHARGE consortium. Am J Clin Nutr. 2015;101:398–406.

    CAS  PubMed  Google Scholar 

  124. Hu Y, Tanaka T, Zhu J, Guan W, Wu JHY, Psaty BM, et al. Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations. J Lipid Res. 2017;58:974–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu J, Manichaikul A, Hu Y, Chen YDI, Liang S, Steffen LM, et al. Meta-analysis of genome-wide association studies identifies three novel loci for saturated fatty acids in East Asians. Eur J Nutr. 2017;56:1477–84.

    CAS  PubMed  Google Scholar 

  126. Li SW, Wang J, Yang Y, Liu ZJ, Cheng L, Liu HY, et al. Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J Transl Med. 2016;14:79.

    PubMed  PubMed Central  Google Scholar 

  127. Li P, Zhao J, Kothapalli KSD, Li X, Li H, Han Y, et al. A regulatory insertion-deletion polymorphism in the FADS gene cluster influences PUFA and lipid profiles among Chinese adults: A population-based study. Am J Clin Nutr. 2018;107:867–75.

    PubMed  Google Scholar 

  128. Guo H, Zhang L, Zhu C, Yang F, Wang S, Zhu S, et al. A single nucleotide polymorphism in the FADS1 gene is associated with plasma fatty acid and lipid profiles and might explain gender difference in body fat distribution. Lipids Health Dis. 2017;16:67.

    PubMed  PubMed Central  Google Scholar 

  129. Dorajoo R, Sun Y, Han Y, Ke T, Burger A, Chang X, et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes Nutr. 2015;10:1–11.

    CAS  Google Scholar 

  130. Zhu J, Sun Q, Zong G, Si Y, Liu C, Qi Q, et al. Interaction between a common variant in FADS1 and erythrocyte polyunsaturated fatty acids on lipid profile in Chinese Hans. J Lipid Res. 2013;54:1477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zheng JS, Huang T, Li K, Chen Y, Xie H, Xu D, et al. Modulation of the association between the PEPD variant and the risk of Type 2 Diabetes by n-3 fatty acids in Chinese hans. J Nutrigenet Nutrigenomics. 2015;8:36–43.

    CAS  PubMed  Google Scholar 

  132. Liu F, Li Z, Lv X, Ma J. Dietary n-3 polyunsaturated fatty acid intakes modify the effect of genetic variation in fatty acid desaturase 1 on coronary artery disease. PLoS One. 2015;10:e0121255.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology of China (2016YFC1304903, and 2017YFC0909700), the National Natural Science Foundation of China (30930081, 81970684, 81700700, 81321062, 81170734, and 81471013), the Chinese Academy of Sciences (XDB38010300, ZDBS-SSW-DQC-02), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and China Scholarship Council (State Scholarship Fund 201904910069).

Author information

Authors and Affiliations

Authors

Contributions

LS performed the literature review and wrote the manuscript. GZ, HL, and XL contributed to the critical revision of the manuscript for important intellectual content. All authors were in agreement with the content of the manuscript.

Corresponding author

Correspondence to Xu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Zong, G., Li, H. et al. Fatty acids and cardiometabolic health: a review of studies in Chinese populations. Eur J Clin Nutr 75, 253–266 (2021). https://doi.org/10.1038/s41430-020-00709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00709-0

This article is cited by

Search

Quick links