Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effect of food and nutrients on iron overload: what do we know so far?

Abstract

There has been no established food and nutrition guidance for diseases characterized by the presence of iron overload (IOL) yet. Hepcidin is a hormone that diminishes iron bioavailability. Its levels increase in response to increased iron stores. Hence, IOL conditions could hypothetically trigger a self-regulatory mechanism for the reduction of the intestinal absorption of iron. In addition, some food substances may modulate intestinal iron absorption and may be useful in the dietary management of patients with IOL. This scoping review aimed to systematize studies that support dietary prescriptions for IOL patients. It was carried out according to the method proposed by the Joanna Briggs Institute and the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Although the need to restrict iron in the diet of individuals with hemochromatosis is quite clear, there is a consensus that IOL diminishes the rate of iron absorption. Reduced iron absorption is also present and has been reported in some diseases with transfusion IOL, in which serum hepcidin is usually high. The consumption of polyphenols and 6-shogaol seems to reduce iron absorption or serum ferritin concentration, while procyanidins do not cause any changes. Vitamin C deficiency is often found in IOL patients. However, vitamin C supplementation and alcohol consumption should be avoided not only because they increase iron absorption, but also because they provoke toxic oxidative reactions when the iron is excessive. Dietary approaches must consider the differences in the pathophysiology and treatment of IOL diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiological classification of iron overload (IOL).
Fig. 2

Similar content being viewed by others

References

  1. McDermid JM, Lönnerdal B. Iron. Adv Nutr. 2012;3:532–3. https://doi.org/10.3945/an.112.002261

    Article  PubMed  PubMed Central  Google Scholar 

  2. Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, et al. Body iron excretion in man: a collaborative study. Am J Med. 1968;45:336–53. https://doi.org/10.1016/0002-9343(68)90069-7

    Article  CAS  PubMed  Google Scholar 

  3. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823:1434–43. https://doi.org/10.1016/j.bbamcr.2012.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ward R. An update on disordered iron metabolism and iron overload. Hematology. 2010;15:311–7. https://doi.org/10.1179/102453310X12647083621164

    Article  CAS  PubMed  Google Scholar 

  5. Darbari DS, Kple-Faget P, Kwagyan J, Rana S, Gordeuk VR, Castro O. Circumstances of death in adult sickle cell disease patients. Am J Hematol. 2006;81:858–63. https://doi.org/10.1002/ajh.20685

    Article  PubMed  Google Scholar 

  6. Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol. 2020;5:25 https://doi.org/10.21037/tgh.2019.11.15

    Article  PubMed  PubMed Central  Google Scholar 

  7. Piperno A. Classification and diagnosis of iron overload. Haematolgica. 1998;83:447–55.

    CAS  Google Scholar 

  8. Fowler C. Hereditary hemochromatosis: pathophysiology, diagnosis, and management. Crit Care Nurs Clin North Am. 2008;20:191–201. https://doi.org/10.1016/j.ccell.2008.01.003

    Article  PubMed  Google Scholar 

  9. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American association for the study of liver diseases. Hepatology. 2011;54:328–43. https://doi.org/10.1002/hep.24330.

    Article  PubMed  Google Scholar 

  10. Tavill AS. American association for the study of liver diseases, American college of gastroenterology; American gastroenterological association. diagnosis and management of hemochromatosis. Hepatology. 2001;33:1321–8. https://doi.org/10.1053/jhep.2001.24783

    Article  CAS  PubMed  Google Scholar 

  11. Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. Lancet. 2016;388:706–16. https://doi.org/10.1016/S0140-6736(15)01315-X

    Article  CAS  PubMed  Google Scholar 

  12. Rachmilewtiz EA, Giardina PJ. How I treat thalassemia. Blood. 2011;118:3479–88. https://doi.org/10.1182/blood-2010-08-300335

    Article  CAS  Google Scholar 

  13. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376:2018–31. https://doi.org/10.1016/S0140-6736(10)61029-X

    Article  CAS  PubMed  Google Scholar 

  14. Giardina PJ, Grady RW. Chelation therapy in beta-thalassemia: the benefits and limitations of desferroxamine. Semin Hematol. 1995;32:304–12.

    CAS  PubMed  Google Scholar 

  15. Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol. 2006;290:G199–203. https://doi.org/10.1152/ajpgi.00412.2005

    Article  CAS  PubMed  Google Scholar 

  16. Ohemeng A, Boadu I. The role of nutrition in the pathophysiology and management of sickle cell disease among children: a review of literature. Crit Rev Food Sci Nutr. 2018;58:2299–305. https://doi.org/10.1080/10408398.2017.1319794

    Article  CAS  PubMed  Google Scholar 

  17. Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematol Am Soc Hematol Educ Program. 2006;507:29–35. https://doi.org/10.1182/asheducation-2006.1.29

    Article  Google Scholar 

  18. Kaitha S, Bashir M, Ali T. Iron deficiency anemia in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2015;6:62–72. https://doi.org/10.4291/wjgp.v6.i3.62

    Article  PubMed  PubMed Central  Google Scholar 

  19. Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: scoping reviews (2020 version). In: Aromatari ES, Munn Z, editors. JBI manual for evidence synthesis. JBI, 2020. https://synthesismanual.jbi.global Accessed 7 June 2020.

  20. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097 https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bezwoda WR, Disler PB, Lynch SR, Charlton RW, Torrance JD, Derman D, et al. Patterns of food iron absorption in iron-deficient white and indian subjects and in venesected haemochromatotic patients. Br J Haematol. 1976;33:425–36. https://doi.org/10.1111/j.1365-2141.1976.tb03560.x

    Article  CAS  PubMed  Google Scholar 

  22. Lynch SR, Skikne BS, Cook JD. Food iron absorption in idiopathic hemochromatosis. Blood. 1989;74:2187–93.

    Article  CAS  PubMed  Google Scholar 

  23. Milder MS, Cook JD, Finch CA. Influence of food iron absorption on the plasma iron level in idiopathic hemochromatosis. Acta Haematol. 1978;60:65–75. https://doi.org/10.1159/000207699

    Article  CAS  PubMed  Google Scholar 

  24. Kaltwasser JP, Werner E, Schalk K, Hansen C, Gottschalk R, Seidl C. Clinical trial on the effect of regular tea drinking on iron accumulation in genetic haemochromatosis. Gut. 1998;43:699–704. https://doi.org/10.1136/gut.43.5.699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lobbes H, Gladine C, Mazur A, Pereira B, Dualé C, Cardot JM. Effect of procyanidin on dietary iron absorption in hereditary hemochromatosis and in dysmetabolic iron overload syndrome: a crossover double-blind randomized controlled trial. Clin Nutr. 2020;39:97–103. https://doi.org/10.1016/j.clnu.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  26. Golombick T, Diamond TH, Manoharan A, Ramakrishna R, Badmaev V. Effect of the ginger derivative, 6-shogaol, on ferritin levels in patients with low to intermediate-1-risk myelodysplastic syndrome—a small, investigative study. Clin Med Insights Blood Disord. 2017;10:1179545X17738755 https://doi.org/10.1177/1179545X17738755

    Article  PubMed  PubMed Central  Google Scholar 

  27. Elalfy MS, Saber MM, Adly AAM, Ismail EA, Tarif M, Ibrahim F, et al. Role of vitamin C as an adjuvante therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol. 2015;96:318–26. https://doi.org/10.1111/ejh.12594

    Article  CAS  PubMed  Google Scholar 

  28. Chapman RW, Hussain MA, Gorman A, Laulicht M, Politis D, Flynn DM, et al. Effect of ascorbic acid deficiency on serum ferritin concentration in patients with β-thalassemia major and iron overload. J Clin Pathol. 1982;35:487–91. https://doi.org/10.1136/jcp.35.5.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walters GO, Jacobs A, Worwood M, Trevett D, Thomson W. Iron absorption in normal subjects and patients with idiopathic haemochromatosis: relationship with serum ferritin concentration. Gut. 1975;16:188–92. https://doi.org/10.1136/gut.16.3.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. International Atomic Energy Agency (IAEA). Assessment of iron bioavailability in humans using stable iron isotope techniques. IAEA Human Health Series no. 21. International Atomic Energy Agency, Austria, 2012.

  31. De Alarcon PA, Donovan ME, Forbes GB, Landaw AS, Stockman JA 3rd. Iron absorption in the thalassemia syndromes and its inhibition by tea. N Engl J Med. 1979;300:5–8. https://doi.org/10.1056/NEJM197901043000102

    Article  PubMed  Google Scholar 

  32. Alqasoumi S, Yusufoglu H, Farraj A, Alam A. Effect of 6-shogaol and 6-gingerol on diclofenac sodium induced liver injury. Int J Pharm. 2011;7:868–73. https://doi.org/10.3923/ijp.2011.868.873

    Article  CAS  Google Scholar 

  33. Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015;4:1–18. https://doi.org/10.3402/jev.v4.28713

    Article  CAS  Google Scholar 

  34. Bell H, Skinningsrud A, Raknerud N, Try K. Serum ferritin and transferrin saturation in patients with chronic alcoholic and non-alcoholic liver diseases. J Intern Med. 1994;236:315–22. https://doi.org/10.1111/j.1365-2796.1994.tb00802.x

    Article  CAS  PubMed  Google Scholar 

  35. Rouault TA. Hepatic iron overload in alcoholic liver disease: why does it occur and what is its role in pathogenesis? Alcohol. 2003;30:103–6. https://doi.org/10.1016/s0741-8329(03)00102-2

    Article  CAS  PubMed  Google Scholar 

  36. Harrison-Findik DD, Schafer D, Klein E, Timchenko NA, Kulaksiz H, Clemens D, et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem. 2006;281:22974–82. https://doi.org/10.1074/jbc.M602098200

    Article  CAS  PubMed  Google Scholar 

  37. Milman N, Kirchhoff M. Relationship between serum ferritin, alcohol intake, and social status in 2235 Danish men and women. Ann Hematol. 1996;72:145–51. https://doi.org/10.1007/s002770050153

    Article  CAS  PubMed  Google Scholar 

  38. Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin Exp Res. 2001;25:1037–45.

    Article  CAS  PubMed  Google Scholar 

  39. Ioannou GN, Dominitz JA, Weiss NS, Heagerty PJ, Kowdley KV. The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology. 2004;126:1293–301. https://doi.org/10.1053/j.gastro.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  40. Fletcher LM, Dixon JL, Purdie DM, Powell LW, Crawford DHG. Pathophysiological classification of iron overloa Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology. 2002;122:281–9. https://doi.org/10.1053/gast.2002.30992

    Article  PubMed  Google Scholar 

  41. Scotet V, Mérour MC, Mercier AY, Chanu B, Le Faou T, Raguénes O, et al. Hereditary hemochromatosis: Effect of excessive alcohol consumption on disease expression in patients homozygous for the C282Y mutation. Am J Epidemiol. 2003;158:129–34. https://doi.org/10.1093/aje/kwg123

    Article  PubMed  Google Scholar 

  42. Lane DJR, Bae DH, Merlot AM, Sahni S, Richardson DR. Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation. Nutrients. 2015;7:2274–96. https://doi.org/10.3390/nu7042274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiu PF, Ko SY, Chang CC. Vitamin C affects the expression of hepcidin and erythropoietin receptor in HepG2 cells. J Ren Nutr. 2012;22:373–6. https://doi.org/10.1053/j.jrn.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  44. O´Brien RT. Ascorbic acid enhancement of desferrioxamine-induced urinary iron excretion in thalassemia major. Ann N Y Acad Sci. 1974;232:221–5. https://doi.org/10.1111/j.1749-6632.1974.tb20588.x

    Article  Google Scholar 

  45. Modell CB, Beck J. Long-term desferrioxamine therapy in thalassemia. Ann N Y Acad Sci. 1974;232:201–10. https://doi.org/10.1111/j.1749-6632.1974.tb20586.x

    Article  CAS  PubMed  Google Scholar 

  46. Brissot P, Deugnier Y, Le Treut A, Regnouard F, Simon M, Bourel M. Ascorbic acid status in idiopathic hemochromatosis. Digestion. 1978;17:479–87. https://doi.org/10.1159/000198154

    Article  CAS  PubMed  Google Scholar 

  47. Sarantos K, Evans P, Garbowski M, Davis B, Porter JB. Vitamin C in patients on long-term deferasirox without supplementation. Blood. 2008;112:1858 https://doi.org/10.1182/blood.V112.11.1858.1858

    Article  Google Scholar 

  48. Schulz EJ, Swanepoel H. Scorbutic pseudoscleroderma: an aspect of Bantu siderosis. S Afr Med J. 1962;36:367–72.

    CAS  PubMed  Google Scholar 

  49. Lynch SR, Seftel HC, Torrance JD, Charlton RW, Bothwell TH. Accelerated oxidative catabolism of ascorbic acid in siderotic Bantu. Am J Clin Nutr. 1967;20:641–7. https://doi.org/10.1093/ajcn/20.6.641

    Article  CAS  PubMed  Google Scholar 

  50. Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9:3–19. https://doi.org/10.3390/nu9070671

    Article  CAS  Google Scholar 

  51. Erlandson ME, Walden B, Stern G, Hilgartner MW, Wehman J, Smith CH. Studies on congenital hemolytic syndromes, IV. Gastrointestinal absorption of iron. Blood. 1962;19:359–78.

    Article  CAS  PubMed  Google Scholar 

  52. Ringelhann B, Konotey-Ahulu F, Dodu SR. Studies on iron metabolism in sickle cell anaemia, sickle cell haemoglobin C disease, and haemoglobin C disease using a large volume liquid scintillation counter. J Clin Pathol. 1970;23:127–34. https://doi.org/10.1136/jcp.23.2.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Omena J, Cople-Rodrigues CS, Cardoso JDA, Soares AR, Fleury MK, Brito FSB, et al. Serum hepcidin concentration in individuals with sickle cell anemia: Basis for the dietary recommendation of iron. Nutrients. 2018;10:498 https://doi.org/10.3390/nu10040498

    Article  CAS  PubMed Central  Google Scholar 

  54. Mangaonkar AA, Thawer F, Son J, Ajebo G, Xu H, Barrett NJ, et al. Regulation of iron homeostasis through the erythroferrone-hepcidin axis in sickle cell disease. Br J Haematol. 2020;189:1204–9. https://doi.org/10.1111/bjh.16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Ministry of Health for encouraging scientific research on sickle cell disease between 2010 and 2014.

Funding

This study was funded by the Ministry of Health (process# 777022/2012), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process# 408401/2017-6); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) (Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

JO participated in the conception and design of the study and wrote the first draft of the manuscript. MC developed the concept and design of this study, supervised the writing of the manuscript, and revised the final version. CC and CSCR critically revised the manuscript and contributed to the writing of the manuscript. All authors were involved in the review and approved the final version of the manuscript.

Corresponding author

Correspondence to Marta Citelli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omena, J., Curioni, C., Cople-Rodrigues, C.d.S. et al. The effect of food and nutrients on iron overload: what do we know so far?. Eur J Clin Nutr 75, 1771–1780 (2021). https://doi.org/10.1038/s41430-021-00887-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00887-5

This article is cited by

Search

Quick links