Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity and pregnancy, the perfect metabolic storm

Abstract

Pregnancy is a physiological stress that requires dynamic, regulated changes affecting maternal and fetal adiposity. Excessive accumulation of dysfunctional adipose tissue defined by metabolic and molecular alterations cause severe health consequences for mother and fetus. When subjected to sustained overnutrition, the cellular and lipid composition of the adipose tissue changes predisposing to insulin resistance, diabetes, and other metabolic disorders compromising the outcome of the pregnancy. Moreover, excessive maternal weight gain, usually in the context of obesity, predisposes to an increased flux of nutrients from mother to fetus throughout the placenta. The fetus of an obese mother will accumulate more adiposity and may increase the risk of future metabolic disorder later in life. Thus, further understanding of the interaction between maternal metabolism, epigenetic regulation of the adipose tissue, and their transgenerational transfer are required to mitigate the adverse health outcomes for the mother and the fetus associated with maternal obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of phenotypes according to body mass index and metabolic health.
Fig. 2: Alterations occurring in adipose tissue during obesity.
Fig. 3: Negative consequences of obesity before pregnancy and during gestation.
Fig. 4: The interaction of maternal obesity effects on placenta and fetus and its consequences for the offspring in adult life from an epigenetic point of view.

Similar content being viewed by others

References

  1. Ramos MP, Crespo-Solans MD, Del Campo S, Cacho J, Herrera E. Fat accumulation in the rat during early pregnancy is modulated by enhanced insulin responsiveness. Am J Physiol Endocrinol Metab. 2003;285. https://doi.org/10.1152/ajpendo.00456.2002.

  2. Gaillard R, Santos S, Duijts L, Felix JF. Childhood health consequences of maternal obesity during pregnancy: a narrative review. Ann Nutr Metab. 2017;69:171–80.

    Article  Google Scholar 

  3. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta Mol Cell Biol Lipids. 2010;1801:338–49.

    Article  CAS  Google Scholar 

  4. Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 2007;3:0634–47.

    Article  CAS  Google Scholar 

  5. De Gonzalez AB, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.

    Article  PubMed Central  Google Scholar 

  6. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. J Am Med Assoc. 2003;289:76–79.

    Article  Google Scholar 

  7. González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Prim. 2017;3. https://doi.org/10.1038/nrdp.2017.34.

  8. Flegal KM, Shepherd JA, Looker AC, Graubard BI, Borrud LG, Ogden CL, et al. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr. 2009;89:500–8.

    Article  CAS  PubMed  Google Scholar 

  9. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr. 2004;79:379–84.

    Article  CAS  PubMed  Google Scholar 

  10. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37:278–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr. 2008;99:931–40.

    Article  CAS  PubMed  Google Scholar 

  12. Blüher M. Metabolically healthy obesity. Endocr Rev. 2020;41:405–20.

    Article  Google Scholar 

  13. De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 2016;22:681–703.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Jimenez F. The concept of normal weight obesity. Prog Cardiovasc Dis. 2014;56:426–33.

    Article  PubMed  Google Scholar 

  15. Du T, Yu X, Zhang J, Sun X. Lipid accumulation product and visceral adiposity index are effective markers for identifying the metabolically obese normal-weight phenotype. Acta Diabetol. 2015;52:855–63.

    Article  CAS  PubMed  Google Scholar 

  16. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses’ Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018;6:714–24.

    Article  PubMed  Google Scholar 

  17. Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis. 2004;14:228–32.

    Article  CAS  PubMed  Google Scholar 

  18. Magkos F. Metabolically healthy obesity: What’s in a name? Am J Clin Nutr. 2019;110:533–7.

    Article  PubMed  Google Scholar 

  19. Achilike I, Hazuda HP, Fowler SP, Aung K, Lorenzo C. Predicting the development of the metabolically healthy obese phenotype. Int J Obes. 2015;39:228–34.

    Article  CAS  Google Scholar 

  20. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20:242–58.

    Article  CAS  PubMed  Google Scholar 

  21. Bray GA, Kim KK, Wilding JPH. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18:715–23.

    Article  CAS  PubMed  Google Scholar 

  22. Moussa O, Arhi C, Ziprin P, Darzi A, Khan O, Purkayastha S. Fate of the metabolically healthy obese—is this term a misnomer? A study from the Clinical Practice Research Datalink. Int J Obes. 2019;43:1093–101.

    Article  Google Scholar 

  23. van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14. https://doi.org/10.1186/1472-6823-14-9.

  24. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59:1075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93. https://doi.org/10.1210/jc.2008-1585.

  27. Kim JY, Van De Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117:2621–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stefan N, Schick F, Häring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26:292–300.

    Article  CAS  PubMed  Google Scholar 

  29. Arner E, Westermark PO, Spalding KL, Britton T, Rydén M, Frisén J, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105–9.

    Article  CAS  PubMed  Google Scholar 

  30. Arner P, Arner E, Hammarstedt A, Smith U. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS ONE. 2011;6. https://doi.org/10.1371/journal.pone.0018284.

  31. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.

    Article  CAS  PubMed  Google Scholar 

  32. Sun K, Tordjman J, Clément K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18:470–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lolmède K, Duffaut C, Zakaroff-Girard A, Bouloumié A. Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab. 2011;37:283–90.

    Article  PubMed  Google Scholar 

  34. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. In: Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab. 2004:89:2548–56.

  35. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015;7:9453–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2009;1791:494–500.

    Article  CAS  Google Scholar 

  37. Arner P, Andersson DP, Bäckdahl J, Dahlman I, Rydén M. Weight gain and impaired glucose metabolism in women are predicted by inefficient subcutaneous fat cell lipolysis. Cell Metab. 2018;28:45–54.e3.

    Article  CAS  PubMed  Google Scholar 

  38. Rydén M, Gao H, Arner P. Influence of aging and menstrual status on subcutaneous fat cell lipolysis. J Clin Endocrinol Metab. 2020;105:E955–62.

    Article  Google Scholar 

  39. Raman B, Edelson GW. Lipid metabolism in women. Infertil Reprod Med Clin North Am. 2000;11:147–71.

    Google Scholar 

  40. Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E. Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity. 2006;14:1543–52.

    Article  CAS  PubMed  Google Scholar 

  41. Lessard J, Laforest S, Pelletier M, Leboeuf M, Blackburn L, Tchernof A. Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocyte. 2014;3:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gray SL, Dalla Nora E, Grosse J, Manieri M, Stoeger T, Medina-Gomez G, et al. Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor γ function (P465L PPARγ) in mice. Diabetes. 2006;55:2669–77.

    Article  CAS  PubMed  Google Scholar 

  43. Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, et al. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48:1570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Virtue S, Petkevicius K, Moreno-Navarrete JM, Jenkins B, Hart D, Dale M, et al. Peroxisome proliferator-activated receptor γ2 controls the rate of adipose tissue lipid storage and determines metabolic flexibility. Cell Rep. 2018;24:2005–.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Medina-Gomez G, Yetukuri L, Velagapudi V, Campbell M, Blount M, Jimenez-Linan M, et al. Adaptation and failure of pancreatic β cells in murine models with different degrees of metabolic syndrome. DMM Dis Model Mech. 2009;2:582–92.

    Article  CAS  PubMed  Google Scholar 

  46. Rangwala SM, Rhoades B, Shapiro JS, Rich AS, Kim JK, Shulman GI, et al. Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity. Dev Cell. 2003;5:657–63.

    Article  CAS  PubMed  Google Scholar 

  47. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem. 2001;276:41245–54.

    Article  CAS  PubMed  Google Scholar 

  48. Lefebvre B, Benomar Y, Guédin A, Langlois A, Hennuyer N, Dumont J, et al. Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans. J Clin Invest. 2010;120:1454–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM. Increased macrophage migration into adipose tissue in obese mice. Diabetes. 2012;61:346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murano I, Rutkowski JM, Wang QA, Cho YR, Scherer PE, Cinti S. Time course of histomorphological changes in adipose tissue upon acute lipoatrophy. Nutr Metab Cardiovasc Dis. 2013;23:723–31.

    Article  CAS  PubMed  Google Scholar 

  51. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347–55.

    Article  CAS  PubMed  Google Scholar 

  52. Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res. 2013;54:2423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, DeFuria J, Jick Z, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56:2910–8.

    Article  CAS  PubMed  Google Scholar 

  54. Petrus P, Mejhert N, Corrales P, Lecoutre S, Li Q, Maldonado E, et al. Transforming growth factor-β3 regulates adipocyte number in subcutaneous white adipose tissue. Cell Rep. 2018;25:551–.e5.

    Article  CAS  PubMed  Google Scholar 

  55. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Peña R, et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 2016;24:142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pellegrinelli V, Heuvingh J, Du Roure O, Rouault C, Devulder A, Klein C, et al. Human adipocyte function is impacted by mechanical cues. J Pathol. 2014;233:183–95.

    Article  CAS  PubMed  Google Scholar 

  58. Spencer M, Yao-Borengasser A, Unal R, Rasouli N, Gurley CM, Zhu B, et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab. 2010;299. https://doi.org/10.1152/ajpendo.00329.2010.

  59. Mori S, Kiuchi S, Ouchi A, Hase T, Murase T. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. Int J Biol Sci. 2014;10:825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29:1575–91.

    Article  CAS  PubMed  Google Scholar 

  61. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPARγ activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab. 2008;295. https://doi.org/10.1152/ajpendo.90345.2008.

  62. Goossens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol (Lausanne). 2015;6. https://doi.org/10.3389/fendo.2015.00055.

  63. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356. https://doi.org/10.1136/bmj.j1.

  64. Mamun AA, Mannan M, Doi SAR. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2014;15:338–47.

    Article  CAS  PubMed  Google Scholar 

  65. Stothard KJ, Tennant PWG, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. J Am Med Assoc. 2009;301:636–50.

    Article  CAS  Google Scholar 

  66. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115. https://doi.org/10.1542/peds.2004-1808.

  67. Gesink Law DC, Maclehose RF, Longnecker MP. Obesity and time to pregnancy. Hum Reprod. 2007;22:414–20.

    Article  CAS  PubMed  Google Scholar 

  68. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Diet and lifestyle in the prevention of ovulatory disorder infertility. Obstet Gynecol. 2007;110:1050–8.

    Article  PubMed  Google Scholar 

  69. Bausenwein J, Serke H, Eberle K, Hirrlinger J, Jogschies P, Hmeidan FA, et al. Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women. Mol Hum Reprod. 2009;16:117–24.

    Article  PubMed  Google Scholar 

  70. Valckx SDM, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12. https://doi.org/10.1186/1477-7827-12-13.

  71. Bellver J, Pellicer A, García-Velasco JA, Ballesteros A, Remohí J, Meseguer M. Obesity reduces uterine receptivity: clinical experience from 9,587 first cycles of ovum donation with normal weight donors. Fertil Steril. 2013;100. https://doi.org/10.1016/j.fertnstert.2013.06.001.

  72. Metwally M, Ong KJ, Ledger WL, Li TC. Does high body mass index increase the risk of miscarriage after spontaneous and assisted conception? A meta-analysis of the evidence. Fertil Steril. 2008;90:714–26.

    Article  PubMed  Google Scholar 

  73. Barker DJP, Thornburg KL. The obstetric origins of health for a lifetime. Clin Obstet Gynecol. 2013;56:511–9.

    Article  PubMed  Google Scholar 

  74. Houghton LC, Ester WA, Lumey LH, Michels KB, Wei Y, Cohn BA, et al. Maternal weight gain in excess of pregnancy guidelines is related to daughters being overweight 40 years later. Am J Obstet Gynecol. 2016;215:246.e1–8.

    Article  CAS  Google Scholar 

  75. Voerman E, Santos S, Golab BP, Amiano P, Ballester F, Barros H, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: an individual participant data meta-analysis. PLoS Med. 2019;16. https://doi.org/10.1371/journal.pmed.1002744.

  76. Zhang C, Ning Y. Effect of dietary and lifestyle factors on the risk of gestational diabetes: review of epidemiologic evidence. Am J Clin Nutr. 2011. https://doi.org/10.3945/ajcn.110.001032.

  77. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Prim. 2019;5. https://doi.org/10.1038/s41572-019-0098-8.

  78. Retnakaran R, Hanley AJG, Raif N, Connelly PW, Sermer M, Zinman B. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab. 2003;88:3507–12.

    Article  CAS  PubMed  Google Scholar 

  79. Metzger BE. Long-term outcomes in mothers diagnosed with gestational diabetes mellitus and their offspring. Clin Obstet Gynecol. 2007;50:972–9.

    Article  PubMed  Google Scholar 

  80. Ching R, Ma W, Schmidt MI, Tam WH, Mcintyre HD, Catalano PM, et al. Clinical management of pregnancy in the obese mother: before conception, during pregnancy, and post partum HHS Public Access. Lancet Diabetes Endocrinol. 2016;4:1037–49.

    Article  Google Scholar 

  81. Sevillano J, De Castro J, Bocos C, Herrera E, Ramos MP. Role of insulin receptor substrate-1 serine 307 phosphorylation and adiponectin in adipose tissue insulin resistance in late pregnancy. Endocrinology. 2007;148:5933–42.

    Article  CAS  PubMed  Google Scholar 

  82. Rodriguez-Cuenca S, Carobbio S, Velagapudi VR, Barbarroja N, Moreno-Navarrete JM, Tinahones FJ, et al. Peroxisome proliferator-activated receptor-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol. 2012;32:1555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vivas Y, Díez-Hochleitner M, Izquierdo-Lahuerta A, Corrales P, Horrillo D, Velasco I, et al. Peroxisome proliferator-activated receptor γ2 modulates late-pregnancy homeostatic metabolic adaptations. Mol Med. 2016;22:724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010;31:387–91.

    Article  CAS  PubMed  Google Scholar 

  85. Barbour LA, Farabi SS, Friedman JE, Hirsch NM, Reece MS, Van Pelt RE, et al. Postprandial triglycerides predict newborn fat more strongly than glucose in women with obesity in early pregnancy. Obesity. 2018;26:1347–56.

    Article  CAS  PubMed  Google Scholar 

  86. Cross JC. Placental function in development and disease. Reprod Fertil Dev. 2006;18:71–6.

    Article  CAS  PubMed  Google Scholar 

  87. O’Tierney-Ginn P, Presley L, Myers S, Catalano P. Placental growth response to maternal insulin in early pregnancy. J Clin Endocrinol Metab. 2015;100:159–65.

    Article  PubMed  Google Scholar 

  88. Hiden U, Maier A, Bilban M, Ghaffari-Tabrizi N, Wadsack C, Lang I, et al. Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia. 2006;49:123–31.

    Article  CAS  PubMed  Google Scholar 

  89. Gil-Sánchez A, Demmelmair H, Parrilla JJ, Koletzko B, Larqué E. Mechanisms involved in the selective transfer of long chain polyunsaturated fatty acids to the fetus. Front Genet. 2011;2. https://doi.org/10.3389/fgene.2011.00057.

  90. Ailhaud G, Grimaldi P, Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207–33.

    Article  CAS  PubMed  Google Scholar 

  91. Berry DC, Jiang Y, Graff JM. Emerging roles of adipose progenitor cells in tissue development, homeostasis, expansion and thermogenesis. Trends Endocrinol Metab. 2016;27:574–85.

    Article  CAS  PubMed  Google Scholar 

  92. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375–83.

    Article  CAS  PubMed  Google Scholar 

  93. Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 2009;7. https://doi.org/10.1186/1741-7007-7-38.

  94. Lecoutre S, Pourpe C, Butruille L, Marousez L, Laborie C, Guinez C, et al. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB J. 2018;32:2768–78.

    Article  PubMed  Google Scholar 

  95. De Almeida Faria J, Duque-Guimarães D, Carpenter AAM, Loche E, Ozanne SE. A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue. Sci Rep. 2017;7. https://doi.org/10.1038/srep44949.

  96. Masuyama H, Mitsui T, Nobumoto E, Hiramatsu Y. The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in Adiponectin and Leptin gene expression for multiple generations in female mice. Endocrinology. 2015;156:2482–91.

    Article  CAS  PubMed  Google Scholar 

  97. Lecoutre S, Petrus P, Rydén M, Breton C. Transgenerational epigenetic mechanisms in adipose tissue development. Trends Endocrinol Metab. 2018;29:675–85.

    Article  CAS  PubMed  Google Scholar 

  98. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reproduction. 2017;153:R97–108.

    Article  CAS  PubMed  Google Scholar 

  99. Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 2017;25:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research conducted for this publication was supported by Ministerio de Economía y Competitividad de España (BFU2013-47384-F, BFU2016-78951-R, BFU2017-90578-REDT), Comunidad de Madrid (Spain) (B2017/BMD-3684) and Karolinska Institutet and MRC.

Author information

Authors and Affiliations

Authors

Contributions

PC, AVP, and GMG wrote the paper.

Corresponding authors

Correspondence to Patricia Corrales or Gema Medina-Gómez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrales, P., Vidal-Puig, A. & Medina-Gómez, G. Obesity and pregnancy, the perfect metabolic storm. Eur J Clin Nutr 75, 1723–1734 (2021). https://doi.org/10.1038/s41430-021-00914-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00914-5

This article is cited by

Search

Quick links