Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phenotyping in clinical nutrition

Iron deficiency anaemia associated with increased placenta praevia and placental abruption: a retrospective case-control study

Abstract

Background/Objectives

A few studies reported association between placenta praevia (PP) and placental abruption (PA) with maternal iron deficiency anaemia (IDA), which is not an established risk factor for these conditions. This retrospective case-control study was performed to determine the relationship between IDA with PP and PA.

Methods

Maternal characteristics, risk factors for and incidence of antepartum haemorrhage overall, and PP and PA, were compared between women with IDA only and controls without IDA or haemoglobinopathies matched for exact age and parity (four controls to each index case), who carried singleton pregnancy to ≥22 weeks and managed under our care from 1997 to 2019.

Results

There were 1,176 women (0.8% of eligible women in the database) with IDA only, who exhibited slightly but significantly different maternal characteristics, and increased antepartum haemorrhage overall (3.4% versus 2.2%, p = 0.031, OR 1.522, 95% CI 1.037–2.234) and PP (1.8% versus 0.9%, p = 0.010, OR 1.953, 95% CI 1.164–3.279), but not PA (1.2% versus 1.1%, p = 0.804, OR 1.077, 95% CI 0.599–1.936). When stratified by parity status, increased PP was found in nulliparous women only. On multivariate analysis adjusting for parity, previous abortion history, overweight and obesity, short stature, other antenatal complications as a composite factor, preterm (<37) delivery, previous caesarean delivery, and infant gender, IDA was associated with PP (aOR 3.485, 95% CI 1.959–6.200) and PA (aOR 2.181, 95% CI 1.145–4.155).

Conclusions

Both PP and PA are increased in women with IDA, the prevention of which could be a means to reduce the occurrence of both PP and PA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health. 2013;1:e16–25. https://doi.org/10.1016/S2214-109X(13)70001-9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Milman N, Taylor CL, Merkel J, Brannon PM. Iron status in pregnant women and women of reproductive age in Europe. Am J Clin Nutr. 2017;106:1655S–1662S. https://doi.org/10.3945/ajcn.117.156000.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tang G, Lausman A, Abdulrehman J, Petrucci J, Nisenbaum R, Hicks LK, et al. Prevalence of iron deficiency and iron deficiency anemia during pregnancy: a single centre Canadian study. Blood. 2019;134:3389 https://doi.org/10.1182/blood-2019-127602.

    Article  Google Scholar 

  4. Cantor AG, Bougastsos C, Dana T, Blazina I, McDonagh M. Routine iron supplementation and screening for iron deficiency anemia in pregnancy: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2015;162:566–76. https://doi.org/10.7326/M14-2932.

    Article  PubMed  Google Scholar 

  5. Khambalia AZ, Collins CE, Roberts CL, Morris JM, Powell KL, Tasevski V, et al. Iron deficiency in early pregnancy using serum ferritin and soluble transferrin receptor concentrations are associated with pregnancy and birth outcomes. Eur J Clin Nutr. 2016;70:358–63. https://doi.org/10.1038/ejcn.2015.157.

    Article  CAS  PubMed  Google Scholar 

  6. Beischer NA, Sivasamboo R, Vohra S, Silpisornkosal S, Reid S. Placental hypertrophy in severe pregnancy anaemia. J Obstet Gynaecol Br Commw. 1970;77:398–409. https://doi.org/10.1111/j.1471-0528.1970.tb03541.x.

    Article  CAS  Google Scholar 

  7. Jwa SC, Fujiwara T, Yamanobe Y, Kozuka K, Sago H. Changes in maternal haemoglobin during pregnancy and birth outcomes. BMC Pregnancy Childbirth. 2015;15:80 https://doi.org/10.1186/s12884-015-0516-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Larsen S, Bjelland EK, Haavaldsen C, Eskild A. Placental weight in pregnancies with high or low haemoglobin concentrations. Eur J Obstet Gynecol Reprod Biol. 2016;206:48–52. https://doi.org/10.1016/j.ejogrb.2016.08.039.

    Article  PubMed  Google Scholar 

  9. Godfrey KM, Redman CWG, Barker DJP, Osmond C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br J Obstet Gynaecol. 1991;98:886–91.

    Article  CAS  Google Scholar 

  10. Lao TT, Wong WM. Placental ratio—its relationship with mild maternal anaemia. Placenta. 1997;18:593–6. https://doi.org/10.1016/0143-4004(77)90015-7.

    Article  CAS  PubMed  Google Scholar 

  11. Lao TT, Tam KF. Placental ratio and anemia in third trimester pregnancy. J Reprod Med. 2000;45:923–8. PMID:11127105.

    CAS  PubMed  Google Scholar 

  12. Kosanke G, Kadyrov M, Korr H, Kaufmann P. Maternal anemia results in increased proliferation in human placental villi. Trophobl Res. 1998;11:339–57. https://doi.org/10.1016/S0143-4004(98)80024-6.

    Article  Google Scholar 

  13. Huang A, Zhang R, Yang Z. Quantitative (stereological) study of placental structures in women with pregnancy iron-deficiency anemia. Eur J Obstet Gynecol Reprod Biol. 2001;97:59–64.

    Article  CAS  Google Scholar 

  14. Kadyrov M, Schmitz C, Black S, Kaufmann P, Huppertz B. Pre-eclampsia and maternal anaemia display reduced apoptosis and opposite invasive phenotypes of extravillous trophoblast. Placenta. 2003;24:540–8. https://doi.org/10.1053/plac.2002.0946.

    Article  CAS  PubMed  Google Scholar 

  15. Kadyrov M, Kingdom JCP, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol. 2006;194:557–63. https://doi.org/10.1016/j.ajog.2005.07.035.

    Article  PubMed  Google Scholar 

  16. Smith C, Teng F, Branch E, Chu S, Joseph KS. Maternal and perinatal morbidity and mortality associated with anemia in pregnancy. Obstet Gynecol. 2019;134:1234–44. https://doi.org/10.1097/AOG.0000000000003557.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arnold DL, Williams MA, Miller RS, Qiu C, Sorensen TK. Iron deficiency anemia, cigarette smoking and risk of abruptio placentae. J Obstet Gynaecol Res. 2009;35:446–52.

    Article  CAS  Google Scholar 

  18. Beckert RH, Baer RJ, Anderson JG, Jelliffe-Pawlowski LL, Rogers EE. Maternal anemia and pregnancy outcomes: a population-based study. J Perinatol. 2019;39:911–9. https://doi.org/10.1038/s41372-019-0375-0.

    Article  PubMed  Google Scholar 

  19. Taylor VM, Peacock S, Kramer MD, Vaughn TL. Increased risk of placenta previa among women of Asian Origin. Obstet Gynecol. 1995;86:805–8.

    Article  CAS  Google Scholar 

  20. Ananth CV, Smulian JC, Vintzileos AM. The association of placenta previa with history of caesarean delivery and abortion: a metaanalysis. Am J Obstet Gynecol. 1997;177:1071–8.

    Article  CAS  Google Scholar 

  21. Demissie K, Breckenbridge MB, Joseph L, Rhoads GG. Placenta previa: preponderance of male sex at birth. Am J Epidemiol. 1999;149:824–30.

    Article  CAS  Google Scholar 

  22. Wen SW, Demissie K, Liu S, Marcoux S, Kramer MS. Placenta praevia and male sex at birth: results from a population-based study. Paediatr Perinat Epidemiol. 2000;14:300–4.

    Article  CAS  Google Scholar 

  23. Johnson LG, Mueller BA, Daling JR. The relationship of placenta previa and history of induced abortion. Int J Gynecol Obstet. 2003;81:191–8.

    Article  CAS  Google Scholar 

  24. Kim LH, Caughey AB, Laguardia JC, Excobar GJ. Racial and ethnic differences in the prevalence of placenta previa. J Perinat. 2012;32:260–4.

    Article  CAS  Google Scholar 

  25. Aliyu MH, Salihu HM, Lynch O, Alio AP, Marty PJ. Placental abruption, offspring sex, and birth outcomes in a large cohort of mothers. J Matern Fetal Neonatal Med. 2012;25:248–52.

    Article  Google Scholar 

  26. Crane JMG, Van den Hof MC, Dodds L, Armson BA, Liston R. Neonatal outcomes with placenta previa. Obstet Gynecol. 1999;93:541–4.

    CAS  PubMed  Google Scholar 

  27. Zlatnik MG, Cheng YW, Norton ME, Thiet M-P, Caughey AB. Placenta previa and the risk of preterm delivery. J Matern Fetal Neonatal Med. 2007;20:719–23.

    Article  Google Scholar 

  28. Kollmann M, Gaulhofer J, lang U, Klaritsch P. Placenta praevia: incidence, risk factors and outcome. J Matern Fetal Neonatal Med. 2016;29:1395–8.

    Article  Google Scholar 

  29. Vahanian SA, Lavery JA, Ananth CV, Vintzileos A. Placental implantation abnormalities and risk of preterm delivery: a systematic review and metaanalysis. Am J Obstet Gynecol. 2015;213 Suppl 4:S78–S90 .https://doi.org/10.1016/j.ajog.2015.05.058.

    Article  PubMed  Google Scholar 

  30. Malhotra M, Sharma JB, Batra S, Sharma S, Murthy NS, Arora R. Maternal and perinatal outcome in varying degrees of anemia. Int J Gynecol Obstet. 2002;79:93–100.

    Article  Google Scholar 

  31. Levy A, Fraser D, Katz M, Mazor M, Sheiner E. Maternal anemia during pregnancy is an independent risk factor for low birthweight and preterm delivery. Eur J Obstet Gynecol Reprod Biol. 2005;122:182–6.

    Article  Google Scholar 

  32. Tzur T, Weintraub AY, Sergienko R, Sheiner E. Can anemia in the first trimester predict obstetrical complications later in pregnancy? J Matern Fetal Neonatal Med. 2012;25:2454–7.

    Article  Google Scholar 

  33. Roberts CL, Algert CS, Warrendorf J, Olive EC, Morris JM, Ford JB. Trends and recurrence of placenta praevia: a population-based study. Aust N Z J Obstet Gynaecol. 2012;52:483–6.

    Article  Google Scholar 

  34. Lao TT, Hui ASY, Sahota DS, Leung TY. Maternal height and risk of hypertensive disorders in pregnancy. J Matern Fetal Neonatal Med. 2019;32:1420–5. https://doi.org/10.1080/14767058.2017.1410786.

    Article  PubMed  Google Scholar 

  35. Shravage JC, Dhumale HA, Bellad MB. Assessment of placental migration in mid trimester low lying placenta. J Obstet Gynecol India. 2009;59:317–9.

    Google Scholar 

  36. Oppenheimer L, Holmes P, Simpson N, Dabrowski A. Diagnosis of low-lying placenta: can migration in the third trimester predict outcome? Ultrasound Obstet Gynecol. 2001;18:100–2.

    Article  CAS  Google Scholar 

  37. Ohira S, Kikuchi N, Kobara H, Osada R, Ashida T, Kanai M, et al. Predicting the route of delivery in women with low-lying placenta using transvaginal ultrasonography: significance of placental migration and marginal sinus. Gynecol Obstet Invest. 2012;73:217–22.

    Article  Google Scholar 

  38. Predanic M, Perni SC, Baergen RN, Jean-Pierre C, Chasen ST, Chervenak FA. A sonographic assessment of different patterns of placenta previa “migration” in the third trimester of pregnancy. J Ultrasound Med. 2005;24:773–80.

    Article  Google Scholar 

  39. Predanić M, Perni SC, Baergen RN, Chasen ST. Ultrasound assessment of placenta previa “migration” in relationship to maternal demographic factors. Gynaecol Perinatol. 2007;16:9–13.

    Google Scholar 

  40. Davis DE, Emlen JT Jr. The placental scar as a measure of fertility in rats. J Wildl Manag. 1948;12:162–6.

    Article  Google Scholar 

  41. Momberg H, Conaway C. The distribution of placental scars of first and second pregnancies in the rat. J Embryol Exp Morph. 1956;4:376–84.

    Google Scholar 

  42. Al-Hijji J, Andolf E, Laurini R, Batra S. Nitric oxide synthase activity in human trophoblast, term placenta and pregnant myometrium. Reprod Biol Endocrinol. 2003;1:51 http://www.RBEj.com/content/1/1/51.

    Article  CAS  Google Scholar 

  43. Surekha MV, Singh S, Sarada K, Sailaja G, Balakrishna N, Srinivas M, et al. Study on the effect of severity of maternal iron deficiency anaemia on regulators of angiogenesis in placenta. Fetal Pediatr Pathol. 2019;38:361–75. https://doi.org/10.1080/15513815.2019.1587120.

    Article  CAS  Google Scholar 

  44. Fong P, Stafforini DM, Brown NJ, Pretorius M. Increased blood flow induces oxidative stress through an endothelium- and nitric oxide-independent mechanism. Free Radic Biol Med. 2010;49:301–5.

    Article  CAS  Google Scholar 

  45. Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular oxidative stress: impact and therapeutic approaches. Front Physiol. 2018;9:1668 https://doi.org/10.3389/fphys.2018.01668.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tikkanen M. Etology, clinical manifestations, and prediction of placental abruption. Acta Obstet Gynecol Scand. 2010;89:732–40.

    Article  Google Scholar 

  47. Buhimschi CS, Schatz F, Krikun G, Buhimschi IA, Lockwood CJ. Novel insights into molecular mechanisms of abruption-induced preterm birth. Expert Rev Mol Med. 2016;12:e35 https://doi.org/10.1017/S1462399410001675.

    Article  CAS  Google Scholar 

  48. Cresswell JA, Ronsmans C, Calvert C, Filippi V. Prevalence of placenta previa by world region: a systematic review and meta-analysis. Trop Med Intern Health. 2013;18:712–24.

    Article  Google Scholar 

  49. Ananth CV, Keyes KM, Hamilton A, Gissler M, Wu C, Liu S, et al. An international contrast of rates of placental abruption: an age-period-cohort analysis. PLoS ONE. 2015;10:e0125246 https://doi.org/10.1371/journal.pone.0125246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stoltzfus RJ. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003;24:S99–S103. 4 Suppl.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TTL—conceived and designed the study, analysed and interpreted the data, performed the literature search and wrote the manuscript. SYAH—contributed to the design, obtained ethical approval, contributed to data interpretation, literature search, and preparation of the manuscript, approved the manuscript. LLW—assisted in data checking and literature search, contributed to interpretation of the results, and preparation and approval of the manuscript. DSS—set up the database, participated in data analysis and interpretation, contributed to the discussion and approved the manuscript.

Corresponding author

Correspondence to Terence Tzu-hsi Lao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, T.Th., Hui, S.Y.A., Wong, L.L. et al. Iron deficiency anaemia associated with increased placenta praevia and placental abruption: a retrospective case-control study. Eur J Clin Nutr 76, 1172–1177 (2022). https://doi.org/10.1038/s41430-022-01086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01086-6

Search

Quick links