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Pathogenic SLIRP variants as a novel cause of autosomal
recessive mitochondrial encephalomyopathy with complex I
and IV deficiency
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In a Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency,
whole exome sequencing revealed two compound heterozygous variants in SLIRP. SLIRP gene encodes a stem-loop RNA-binding
protein that regulates mitochondrial RNA expression and oxidative phosphorylation (OXPHOS). A frameshift and a deep-intronic
splicing variant reduced the amount of functional wild-type SLIRP RNA to 5%. Consequently, in patient fibroblasts, MT-ND1, MT-ND6,
and MT-CO1 expression was reduced. Lentiviral transduction of wild-type SLIRP cDNA in patient fibroblasts increased MT-ND1, MT-
ND6, and MT-CO1 expression (2.5–7.2-fold), whereas mutant cDNAs did not. A fourfold decrease of citrate synthase versus total
protein ratio in patient fibroblasts indicated that the resulting reduced mitochondrial mass caused the OXPHOS deficiency.
Transduction with wild-type SLIRP cDNA led to a 2.4-fold increase of this ratio and partly restored OXPHOS activity. This confirmed
causality of the SLIRP variants. In conclusion, we report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with
OXPHOS deficiency.
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INTRODUCTION
Mitochondrial encephalomyopathies (ME) are most often char-
acterized by deficiencies in oxidative phosphorylation (OXPHOS)
and ATP production, and manifest with a broad spectrum of
clinical symptoms [1, 2]. Their diagnosis is challenging as a single
gene defect can demonstrate a broad and complex variety of
symptoms (clinical heterogeneity) and many different gene
defects can result in a similar phenotype (genetic heterogeneity).
The estimated number of nuclear genes involved in mitochondrial
function is around 1500 of which only >250 genes have been
shown to be involved in mitochondrial disease. ME is caused by
variants in either the mtDNA or in a nuclear gene involved in
OXPHOS [3]. However, known variants and genes only explain part
of the cases. Whole exome sequencing (WES) provides the power
to identify the genetic defects of ME in undiagnosed patients.
Recent examples of novel ME genes, resolved by WES, are
SLC25A42 (encoding an inner mitochondrial membrane protein
that imports Coenzyme A into the mitochondrial matrix) [4], VARS2
(encoding the mitochondrial valyl tRNA-synthetase that engages
in mitochondrial protein synthesis) [5], and FBXL4 (encoding F-box
and leucine-rich repeat 4 protein that controls mtDNA home-
ostasis and maintenance) [6]. These examples illustrate the

heterogeneity in genetic causes and affected pathways in
ME, which pose a challenge to an accurate molecular diagnosis
of ME.
SLIRP (SRA stem-loop-interacting RNA-binding protein) plays an

essential role in maintaining normal steady-state levels of all mt-
mRNA transcripts encoding structural OXPHOS proteins [7].
Endogenous SLIRP predominantly resides in mitochondria and is
highly expressed in energy-demanding tissues, such as brain,
skeletal muscle, heart, and liver [8]. Moreover, SLIRP has also been
reported to physically interact with leucine‐rich pentatricopeptide
repeat containing (LRPPRC) protein and to maintain normal levels
of LRPPRC [9]. LRPPRC regulates mt-mRNA stability and a founder
variant in the LRPPRC gene was shown to cause a rare French-
Canadian type of Leigh syndrome (LSFC) with complex IV
deficiency [10–12]. Taken together, it is suggested that SLIRP
may play a role in the pathophysiology of mitochondrial diseases.
In a Dutch boy with ME, presenting as congenital hypotonia,

diffuse cerebral atrophy and hypomyelination and a complex I and
IV deficiency, WES revealed compound heterozygosity for two
variants in the SLIRP gene. The pathogenicity was confirmed by a
complementation assay. We showed for the first time that
pathogenic variants in SLIRP can cause autosomal recessive ME,
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adding to the genetic heterogeneity and clarifying underlying
mechanisms of ME.

MATERIALS AND METHODS
Whole exome sequencing
Sequencing of the mtDNA [13] and a panel of 412 nuclear mitochondrial
genes [14] did not reveal the genetic cause, therefore a WES was
performed on this patient. WES was carried out and analyzed as previously
described [14]. Briefly, 1 µg genomic DNA was fragmented and captured
with the Agilent SureSelect Human All Exon v4 plus UTR’s kit (Agilent
Technologies, Amstelveen, The Netherlands) for exome enrichment.
Sequencing was performed on a HiSeq 2000 Instrument (Illumina,
Eindhoven, The Netherlands), and a coverage of at least 20× was achieved
in more than 98% of target sequences.

Variant prioritization
Bioinformatic analysis was performed using an in-house data annotation
Python/R script that matched variants to the RefGene (refGene_131114),
GenCode v19 (genCode_v19_030215), and dbSNP144 hg19 tracks from the
UCSC genome browser as previously described [14]. Due to an autosomal
recessive inheritance, exome data of the patient were filtered for non-
synonymous homozygous or compound heterozygous variants, with a
minor allele frequency (MAF) below 0.01 in dbSNP144 and gnomAD,
conservation by PhyloP (>1.5), and protein damage by SIFT (<0.05) and
Polyphen2 (>0.85). Possible splice site variants were analyzed with
SpliceSiteFinder-like, MaxEntScan, NNSPLICE and GeneSplicer. Candidate
variants validation and segregation analysis was performed by Sanger
sequencing using an ABI 3730 sequencer (Applied Biosystems, Bleiswijk,
The Netherlands) after PCR amplification with primers listed in Supple-
mentary Table S1. Furthermore, candidate variants were searched in
available public databases including PubMed, Clinvar and the Human Gene
Mutation Database (HGMD).

Functional studies
Total RNA isolation and qRT-PCR was performed as previously described
[15], using primers against SLIRP and mtDNA-encoded subunits (primer
sequences depicted in Supplementary Table S2). For TA cloning, PCR
products of the patient cDNA were amplified using primers in
Supplementary Table S1, and cloned into pCR2.1 vector (Thermo Fisher
Scientific, Breda, the Netherlands). Positive clones were validated by
Sanger sequencing. For complementation assay, SLIRP cDNA sequences
were cloned into a lentiviral expression vector pReceiver-Lv21 (GeneCo-
poeia, Rockville, MD, USA) and validated by Sanger sequencing. Lentivirus
was produced by co-transfecting HEK293T cells with Lenti-Pac FIV
packaging plasmids (Cat. FPK-LvTR-20, GeneCopoeia) and the SLIRP cDNA
expression vectors in a 1:1 ratio. Patient fibroblasts were infected at 70%
confluence with medium containing lentiviral particles and 8 µg/ml
polybrene (Sigma-Aldrich, Darmstadt, Germany). Stably transduced fibro-
blasts were selected with 200 µg/ml G418 (Sigma-Aldrich) for 2 weeks,
starting 48 h post transduction, followed by culturing in 5mM D-
(+)-galactose (Sigma-Aldrich) supplemented DMEM (Thermo Fisher
Scientific) medium for 48 h. For nonsense-mediated mRNA decay (NMD)
assay, 80–90% confluent cells were treated with 100 µg/ml cycloheximide
(CHX, Sigma-Aldrich) for 6 h prior to RNA isolation and qRT-PCR analysis as
previously described [16]. For Western blot, anti-MT-CO1 (ab203912)
(Abcam, Cambridge, UK) and anti-SDHA (ab14715) (Abcam) were used in
cell lysates separated through 4–20% gradient SDS-PAGE (Bio-Rad) as
previously described [17].

Database sharing of variants
SLIRP transcript NM_031210.5/ENST00000557342.6 was used for variant
nomenclature and NC_000014.9 (GRCh38.p13) for exon numbering.
Identified SLIRP variants were submitted to the Leiden Open Variation
Database (individual: 00320233, DB-ID: SLIRP-000001 and SLIRP-000002)
and to Clinvar (SUB9301614: SCV001519323; SUB9301630: SCV001519324).

RESULTS
Clinical history
The patient was the second child of non-consanguineous Dutch
parents, born at 41 5/7 weeks after an uncomplicated pregnancy

(birth weight 4.40 kg, >97th percentile) with Apgar scores being 1/
5/10. Delayed progression of the delivery necessitated a cesarean
section. The boy was floppy from birth and showed bouts of
opisthotonic posturing. He slowly developed some motor skills,
with at best reaching with his fingers to his mouth, but lost these
abilities gradually around 5 months of age. After 6 months of
age he developed an inspiratory stridor, a nystagmus was noted
and he was difficult to console. Arms and legs were weak and not
able to move against gravity (MRC 2). Reflexes could not be
elicited. Tremors were seen in the muscles from head and
shoulder-girdle.
Brain MRI at 9 months revealed delayed white matter

maturation in the frontal and parietal regions and symmetrical
in the center semi-ovale, though some maturing was seen in the
occipital region. Apart from mild diffuse cerebral atrophy, no
structural abnormalities were observed. Spectroscopy at
14 months did not show signs of cell loss nor a lactic acid peak
in the white matter and basal ganglia voxel analyzed. Electro-
neurography showed a lack of sensory nerve and low compound
motor action potential, which demonstrated an axonal or a mixed
neuropathy. The visual evoked response via both eyes showed
severe delay, fitting the visual tract defective myelination. Light
and electron microscopic analysis showed no signs of hypomye-
lination on a sural nerve biopsy, and no abnormalities in
conjunctival and rectal biopsies. The boy further deteriorated
and died at 18 months from general muscle weakness with
respiratory insufficiency and pneumonia.
Morphology studies on biopsy material from quadriceps muscle

showed a denervation pattern. No ragged red, COX negative fibers
or signs of increased histochemical staining of succinate
dehydrogenase were found. Biochemical measurements of the
OXPHOS complexes in quadriceps muscle biopsy and in cultured
skin fibroblasts showed a deficiency of Complex I (muscle 0.06
(29%) and fibroblast 0.09 (45%) normalized to citrate synthase
(CS); muscle 5.53 and fibroblast 2.41 µmol NADH/min normalized
to wet protein) and Complex IV (muscle 0.57 (48%) and fibroblast
0.31 (44%) normalized to CS; muscle 50.26 and fibroblast 8.62
µmol NADH/min normalized to wet protein). The discrepancy
between the histochemical staining and biochemical measure-
ments was probably because the biopsy was obtained at a young
age of the patient and histochemical abnormalities usually appear
later in life [18]. Due the poor muscle quality and the death of the
patient the enzyme measurement could not be repeated.
Metabolic screening of blood and cerebrospinal fluid (CSF)
showed a slight increase of lactate in blood (3.1 mmol/l; normal
< 2.3 mmol/l) and in CSF (3.8 mmol/l; normal < 2.8 mmol/l). Amino
acid, organic acid, purines and pyrimidine metabolism and
sialotransferrine patterns were normal. Genetic analysis did not
show chromosomal aberrations.

WES revealed two candidate variants in SLIRP
After filtering the WES data by allele frequency, conservation and
predicted pathogenicity, three candidate genes (TMPRSS9, NPC1
and USP9Y) remained. As variants in these genes could not
explain the clinical phenotype, we included genes with one
possible disease-causing variant and a clear relation to OXPHOS.
The SLIRP gene contained a heterozygous possible disease-
causing frameshift variant in exon 3 (NM_031210.5:c.248_252del;
NP_112487.1:p.(Ile83Argfs*10), rs776989213, MAF= 0.000008 in
dbSNP144, 0.0007% in gnomAD). Further evaluation of the
SLIRP sequences revealed another heterozygous SLIRP variant
(NC_000014.8:g.78177003 A > G; NM_031210.5:c.98-178 A > G,
rs1402362539, MAF= 0.000016 in dbSNP144, 0.001% in gno-
mAD), deep in intron 1, which was reliably detected within the
WES data. Both variants were extremely rare in public databases
(ExAc, dbSNP144 and gnomAD), nor reported in PubMed, Clinvar
and HGMD. In spite of our best effort, we could not find another
case of ME patient with SLIRP variants. The SLIRP variants were
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confirmed in the patient by Sanger sequencing and both parents
were carrier of one of the variants, indicating compound
heterozygosity for the patient (Fig. 1). Prediction algorithms
predicted the c.98-178 A > G variant creates a novel cryptic 5′′
splice site 106 nt downstream of a high-scoring potential cryptic
3′ splice site (Fig. 2A).

Effect of SLIRP variants at the fibroblast RNA level
Two SLIRP cDNA products were detected in the patient cDNA, one
of the expected size and one larger (Fig. 2B). TA cloning and
Sanger sequencing revealed three different cDNA fragments. The
largest fragment showed retention of a 106 bp fragment of intron
1 (r.97_98ins98-283_98-178, Fig. 2C), leading to a frameshift and
premature stop codon (NP_112487.1:p.(Ser33Argfs*9)) due to the
SLIRP c.98-178 A > G variant. The normal-sized fragment consisted
of SLIRP cDNA with the deletion-type and the wild-type. qRT-PCR
was performed using primer pairs to capture overall SLIRP
expression and each transcript type (wild-type, deletion-type,
and insertion-type) separately (Supplementary Fig. 1A). Forward
primer (Fq1) in exon 2 and reverse primer (Rq1) in exon 3 showed
a decrease of overall SLIRP expression to 63% of controls
(Supplementary Fig. 1B). Forward primer (Fq2) in exon 3 and
reverse primer (Rq2) encompassing the 5 bp deletion in exon 3
quantified wild-type and insertion-type SLIRP mRNA as 16% of
controls (Supplementary Fig. 1B). Forward primer (Fq3) spanning
the exon 1-exon 2 boundary and primer (Rq3) in front of the exon
3 deletion determined the level of wild-type and deletion-type
transcripts as 52% of controls (Supplementary Fig. 1B). From these
data we calculated that in the patient, 74% is deletion-type, 18% is
insertion-type and only a small minority (8%) is wild-type
(Supplementary Fig. 1C). As the SLIRP expression is overall
decreased to 63%, only 5% of wild-type SLIRP RNA is present in
the patient fibroblasts. CHX treatment did not increase overall,
wild-type and deletion-type, wild-type and insertion-type SLIRP
mRNA expression in patient fibroblasts (Supplementary Fig. 1D).

Wild-type SLIRP transduction rescues mtDNA gene expression
and OXPHOS enzyme activity
SLIRP facilitates the association of mt-mRNAs with the mitoribo-
some [9]. In fibroblasts of the patient, qRT-PCR showed a decrease
of mt-mRNA transcripts MT-CO1, MT-ND1, MT-ND6, and MT-CYB
(Fig. 3A, Supplementary Fig. 2). SLIRP has been reported to
physically interact with leucine-rich pentatricopeptide repeat
containing (LRPPRC) protein and to maintain normal levels of
LRPPRC [9]. The level of LRPPRC mRNA transcripts was decreased
to 76% in the patient fibroblasts, although not statistically
significant (Fig. 3A). A complementation assay was performed in
patient fibroblasts, which were stably transduced with lentiviral
clones containing cDNA from wild-type SLIRP, SLIRP containing the
deletion, and SLIRP containing the 106 bp intron 1 retention.
Complex IV MT-CO1 RNA expression in patient fibroblasts
transduced with wild-type SLIRP showed a 7.2-fold increase (***,
p < 0.001) and complex I MT-ND1 and MT-ND6 a 2.5- and 4.2-fold
increase (Fig. 3B), respectively, compared to non-transduced
patient fibroblasts. The increased expression of MT-CYB was not
significant (Fig. 3B). Neither the deletion-type SLIRP nor insertion-
type SLIRP increased expression of these genes (Fig. 3B).
The enzyme activity of CS and OXPHOS complex I and IV was

measured in the patient fibroblasts before and after complemen-
tation with wild-type SLIRP. The CS versus protein ratio in the
patient cells was 27% of the controls, which suggested a
mitochondrial depletion (Fig. 3C). After transfection with wild-
type SLIRP cDNA, the CS versus protein ratio increased to 64% of
control values. Related to the protein level, complex I activity in
patient fibroblasts was fully restored by wild-type SLIRP, and
complex IV partly (Fig. 3C).
Moreover, protein levels of MT-CO1 and SDHA were measured

in the patient fibroblasts before and after complementation with
wild-type SLIRP cDNA. The MT-CO1/SDHA protein ratio showed a
40–50% decrease in patient fibroblasts, which was improved by
transduction with the wild-type SLIRP cDNA (Fig. 3D).

Fig. 1 Schematic view of SLIRP gene and positions of variants. A Pedigree of the index family. The index patient was diagnosed with
mitochondrial encephalomyopathy as depicted by the filled black symbol. B Schematic diagram showing the position of two SLIRP mutations.
Exons and introns are not drawn to scale. UTR= untranslated region.

L. Guo et al.

1791

European Journal of Human Genetics (2021) 29:1789 – 1795



DISCUSSION
The SLIRP c.248_252del and c.98-178 A > G variants were identified
by WES in a non-consanguineous Dutch patient as a novel cause of
ME. Initially, the SLIRP gene was missed due to the presence of only
one possible pathogenic variant in the predefined region of
interest (exons and their 100 bp flanking intronic regions). As none
of the genes with two potentially pathogenic variants could
explain the clinical symptoms, WES data was reanalyzed for
OXPHOS-related genes with one possible disease-causing variant
(rare in our routine WES analysis). SLIRP was such a candidate.
Endogenous SLIRP predominantly resides in mitochondria and is
highly expressed in energy-demanding tissues, such as brain,
skeletal muscle, heart and liver, suggesting the role of SLIRP in the
pathophysiology of mitochondrial diseases [8]. SLIRP was first
described as an RNA-binding protein that interacts with the
STR7 substructure of steroid-receptor RNA-activator [8]. SLIRP
harbors two ubiquitination sites (Lys36, Lys88) within an RNA
recognition motif domain (Ala21-Val91), which is essential for
correct association of mt-mRNAs with the mitoribosome [9, 19–21].
Subsequently, a second deep-intronic variant in SLIRP intron 1 was
detected with a predicted effect on splicing. Total SLIRP mRNA
expression was reduced to 63% in patient fibroblasts compared to
controls. Analysis of SLIRP transcripts showed that the majority of
SLIRP transcripts was deletion-type (74%), followed by insertion-
type (18%) and wild-type (8%). The reduced level of total SLIRP
transcripts and the low level of insertion-type SLIRP transcripts
suggested NMD for the c.98-178 A > G variant, but not for the
c.248_252del variant with the premature stop codon in the last

exon. CHX treatment did not increase overall, wild-type and
deletion-type, wild-type and insertion-type SLIRP mRNA expression
in patient fibroblasts, therefore NMD of SLIRP mRNA expression
could not be demonstrated. As different mechanisms of NMD exist,
we still consider it likely that NMD is the cause of the imbalance in
transcripts, but further experiments are needed to demonstrate or
exclude NMD unequivocally. Corrected for the overall decrease in
expression to 63%, indicated that only 5% wild-type SLIRP
transcripts were present compared to controls. The other two
transcripts would not yield a functional protein.
SLIRP is an OXPHOS regulator, maintaining steady-state levels of

mtDNA-encoded transcripts [7]. In SLIRP knockout mice, SLIRP was
involved in presenting mature mRNAs to the mitoribosome to
fine-tune mitochondrial protein synthesis [9]. In SLIRP knockout
mice a drastic decrease in mt-mRNA transcripts was observed, in
line with the decrease of MT-ND1, MT-ND6, MT-CYB and MT-CO1
RNA in fibroblasts of our patient. MT-ND6 RNA was only slightly
decreased to 79%, which may be due to the relatively small size
and short half-life compared to the other mt-mRNA transcripts
[22, 23]. SLIRP physically interacts with LRPPRC and protects the
latter from degradation by mitochondrial matrix proteases [9]. The
locations of LRPPRC-SLIRP binding sites are conserved through
evolution [24]. LRPPRC regulates mt-mRNA stability and a
recessive missense variant Ala354Val in the LRPPRC gene was
shown to cause LSFC [10–12]. Although LSFC and ME are both
early-onset mitochondrial disorders with severe clinical presenta-
tions, different clinical evolution appears in LSFC patients that
characterized by progressive neurodegeneration and acute

Fig. 2 The effects of SLIRPmutations on RNA level. A Schematic diagram of the abnormal splicing event induced by the SLIRP c.98-178 A > G
variant, showing the positions of the novel 5′ and 3′ cryptic splice site and the encoded stop codon resulting from partial retention of intron 1.
Exons and introns are not drawn to scale. B PCR product of entire SLIRP cDNA. The control showed the expected wild-type size, whereas the
patient had an additionally larger transcript product (n= 3). C Sequence analysis after cloning patient SLIRP cDNA revealed a 106 bp retention
from intron 1 due to the c.98-178 A > G variant in SLIRP gene.
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acidosis, while our ME patient showed a delayed neurodevelop-
ment and a slight increase of lactate in blood and CSF. In addition,
LSFC patients exhibited isolated complex IV deficiency in skin
fibroblasts and combined complex I and IV deficiencies in skeletal
muscle, while our ME patient showed a biochemical defect of

complex I and IV in both fibroblasts and skeletal muscle. SLIRP and
LRPPRC form a ribonucleoprotein complex that promotes the
posttranscriptional expression of mt-mRNA transcripts and both
proteins are co-stabilized within the complex [7, 22]. In our
patient, the levels of LRPPRC mRNA transcripts decreased to 76%
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compared to control fibroblasts (though not statistically signifi-
cant). As the predominant deletion variant c.248_252del is located
downstream to key amino acids (His59, Arg60, Glu80, Asn81 and
His82) for LRPPRC-SLIRP interaction, this may cause limited
damage to the LRPPRC-SLIRP binding interface [25].
In our patient, a decrease in mtDNA-encoded transcripts, a

decreased CS/protein ratio and a combined complex I and IV
deficiency were detected in muscle and fibroblasts. Transduction
with wild-type SLIRP cDNA caused an increase in mtDNA-encoded
transcripts, such as MT-CO1, MT-ND1 and MT-ND6, whereas this did
not happen when transduced with the deletion-type SLIRP cDNA or
insertion-type SLIRP cDNA. Transduction with the wild-type SLIRP
cDNA also caused an increase in mitochondrial mass per cell
(increased CS/protein ratio) and an increase in complex I and IV
activity, when normalized for the amount of protein. Moreover, MT-
CO1/SDHA protein ratio was decreased in patient fibroblasts, which
was improved by transduction with the wild-type SLIRP cDNA.
The two SLIRP variants were classified as likely pathogenic

according to ACMG criteria [26], leading to autosomal
recessive ME:
Strong evidence of pathogenicity (PS3): Wild-type SLIRP

transduction rescued mtDNA gene expression (increased mt-
mRNA transcripts and MT-CO1/SDHA protein ratio) and OXPHOS
enzyme activity (increased complex I and IV enzyme activity),
which was demonstrated in the complementation assay.
Moderate evidence of pathogenicity (PM2): Both variants are not

present in PubMed, ClinVar or HGMD and only extremely low
frequency as heterozygote in dbSNP144 and gnomAD. The splicing
variant (NC_000014.8:g.78177003 A > G; NM_031210.5:c.98-178 A
> G, rs1402362539) has an MAF of 0.000016 in dbSNP144 and
0.001% in gnomAD. The deletion variant (NM_031210.5:
c.248_252del; NP_112487.1:p.(Ile83Argfs*10), rs776989213) has an
MAF of 0.000008 in dbSNP144 and 0.0007% in gnomAD.
Supporting evidence of pathogenicity (PP1): Both variants in the

patient were segregated within this family.
Supporting evidence of pathogenicity (PP3): Both variants affect

highly conserved amino acids. The deletion variant is predicted to
be pathogenic according to SIFT and Polyphen2. The splicing
variant is predicted to create a novel cryptic 5′ splice site.
WES is a powerful tool to identify the majority of variants that

cause mitochondrial diseases [14]. Still, due to technical issues and
location of variants outside the captured regions, pathogenic
variants will be missed. A recent study reported an additional 10%
(5 of 48) increase of diagnostic rate by RNA sequencing in
molecularly undiagnosed mitochondrial patients [27]. Although
most mitochondrial genes are ubiquitously expressed, nuclear
encoded mitochondrial genes can have imbalanced expression in
rare situation, like SLIRP gene in our case. Imbalanced expression
of SLIRP alleles was discovered by analyzing RNA in our patient
fibroblasts, indicating that RNA sequencing would have discov-
ered SLIRP as a candidate gene. RNA sequencing is therefore an
important complementary tool to identify rare, disease-causing
variants in mitochondrial diseases, but it should be realized that
RNA sequencing is limited to genes that are expressed in the cells
or tissue studied.
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