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Alkaptonuria is characterized by the accumulation of homogentisic acid (HGA), part of which is excreted in the urine but the excess
HGA forms a dark brown ochronotic pigment that deposits in the connective tissue (ochronosis), eventually leading to early-onset
severe arthropathy. We analyzed a cohort of 48 Russian AKU families by sequencing all 14 exons (including flanking intronic

sequences) of the homogentisate 1,2-dioxygenase gene (HGD) and Multiplex Ligation-dependent Probe Amplification (MLPA)

analysis. Nine novel likely pathogenic HGD variants were identified, which have not been reported previously in any other country.
Recently, Bychkov et al. [1] reported on the variant spectrum in another cohort of 49 Russian AKU patients. Here we summarize
complete data from both cohorts that include 82 Russian AKU families. Taken together, 31 different HGD variants were found in
these patients, of which 14 are novel and found only in Russia. The most common variant was c.481G>A (p.(Gly161Arg)), present in

almost 54% of all AKU alleles.

European Journal of Human Genetics (2022) 30:237-242; https://doi.org/10.1038/541431-021-00955-1

RESULTS AND DISCUSSION

Alkaptonuria is characterized by the accumulation of homogentisic
acid (HGA), of which large amounts are excreted in the urine [2].
Excess HGA forms a dark brown ochronotic pigment that deposits in
the connective tissue (ochronosis), mainly in the skin, sclera, spine,
and large-joint cartilage, as well as in the heart valves, where it causes
aortic stenosis. Starting in their early 30s, Alkaptonuria (AKU) patients
usually suffer from early-onset severe arthropathy (described in detail
in ref. [3]). This disease is caused by the variants within a gene coding
for homogentisate 1,2-dioxygenase (HGD) [4]. Worldwide, DNA
sequencing has been performed in about 720 AKU patients and
249 different HGD variants have been reported, as summarized in the
HGD mutation database (http://hgddatabase.cvtisr.sk/, June 2021).

To our knowledge, until recently there have been no reports on
the AKU variant spectrum in Russia. We analyzed 48 Russian AKU
families (Supplementary Table 1) by sequencing all 14 exons of the
HGD gene (including flanking intronic sequences) and by Multiplex
Ligation-dependent Probe Amplification (MLPA) analysis (as
describe before [5]), and our results were submitted to the HGD
mutation database [6]. We found nine novel HGD variants, most
likely AKU-causing, which have not been reported previously in any
other country. Early this year, Bychkov et al. [1] reported on their
study in 49 Russian AKU families. In 37 patients, they identified
homozygous or compound heterozygous variants within the HGD
gene responsible for AKU. In their cohort, the variant spectrum
comprised 12 missense variants, 3 splicing, and 2 small indels, of
which 9 were novel, and the most common variant was c481G>A
(p.(Gly161Arg)), present in almost 73% of all AKU alleles [1].

After communication with the authors, we discovered that there
was a partial overlap of two cohorts: 15 of their patients had
already been analyzed by us and submitted to the database. There
was also a partial overlap in novel variants: four of nine novel

variants observed in our study (c.131T>C (p.(Leu44Pro)), c.127C>G
(p.(GIn43Glu)), c. (p.(lle179Ser)), and c.753C>T (p.(Gly251Gly)))
were reported in detail by Bychkov et al. [1] as well.

We summarize in Table 1 complete data on the variant
spectrum observed in all 82 Russian AKU families reported by
two groups. In summary, 31 different HGD variants were found in
Russia so far, of which 14 are novel and found only in this country.
However, there are still 12 AKU patients from the cohort of
Bychkov et al. [1], in which the second variant has not been
identified; thus, even more variants can be found, indicating that
in Russia AKU shows rather high allelic heterogeneity.

We can confirm that the c.481G>A (p.(Gly161Arg)) missense
variant in exon 8 is the most frequent one in Russia but it is
present on 53.7% out of 164 AKU chromosomes, not in 70% as
observed in a previous smaller cohort [1]. This variant is rather
frequent also in Slovakia, where it represents 68% AKU alleles
(Table 1, the HGD mutation database).

Table 2 summarizes five additional novel HGD variants found by
us and their characterization according to ACMG guidelines [7].
Three of them are missense changes: c.174A>T (p.(Arg58Ser)),
c.184T>A (p.(Tyr62Asn)), and c.791A>G (p.(Asn264Ser)). These amino
acid substitutions were predicted to cause Protomer destablization
by mCSM tool that has been recently shown to be the most effective
in predicting the effect of HGD missense variants on the HGD
protein function in AKU [5].

Another novel variant is c470-1G>A, a substitution that abolishes
donor splice site in intron 7 and most likely leads into exon
8 skipping (c.470_549del), thus to a frameshift and premature stop
codon (p.(Val157Glufs*11), Table 1).

The last novel variant is an intronic variant c.1188 + 8T>A in
intron 13 that is predicted to diminish a constitutive donor
splicing site score and to increase a score of the cryptic donor site.
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During splicing event, an inclusion of 4 nucleotides of intron 13
into the HGD transcript can occur (c.1189_1190insTAAG), thus to
cause a frameshift and preliminary stop codon (p.(Ala397Valfs*6),
Table 1). In this patient, no other variants have been identified in
any of the 14 exons of the HGD gene by sequencing and MLPA,
and no RNA was available for the analysis.

Silent variant ¢.753C>T (p.(Gly251Gly)) found in 6.1% of Russian
AKU chromosomes (Table 1) was shown to affect splicing [1]. In
our cohort, it was present in seven AKU chromosomes/families.
Interestingly, in one of these families (AKU_DB_287), there were
three patients/sibs who carried each three AKU variants: ¢.753C>T
(p.(Gly251Gly)) in one copy and c.16-1G>A (ivs1-1G>A) in two
copies. All three patients carried two additional silent variants as
well: ¢.372C>T (p.(Asp124Asp), exon 6, rs140977117, frequency
0.0232) and c.1191A>C (p.(Ala397Ala), exon 14, rs137923025,
frequency 0.0231) (Supplementary Table 1), which are both listed
in gnomAD Exomes and gnomAD Genomes databases as benign
polymorphisms. They have one healthy sister who does not carry
any of the mentioned variants. We were not able to follow the
segregations of the variants in the family, as DNA of the parents
was not available. The same silent variants were present also in
the patient AKU_DB_333, in combination with different variants
(c.481G>A (p.(Gly161Arg)) and c.536T>G (p.(lle179Ser))), indicating
that they are not associated with specific AKU allele/haplotype
(Supplementary Table 1).

AKU shows a rather high phenotype heterogeneity, even within
one family, and it is believed that disease severity is highly
dependent upon the total load of non-excreted HGA throughout the
life and increases with the patient’s age [3]. It has been shown by us
and others that HGD proteins carrying AKU variants show reduced
activity when compared to the wild-type HGD, ranging from <1% up
to 34% of wild type [5, 8]. In our recent genotype—phenotype
correlation study, we also showed that there was a small but
statistically significant difference in urinary HGA excretion (corrected
for dietary protein intake) in patients who carried variants with 1%
residual HGD activity (such as c.481G>A (p.(Gly161Arg)) frequent in
Russia) compared to those with >30% residual HGD activity (namely
c.1102A>G (p.(Met368Val)) and ¢.365C>T (p.(Ala122Val))) [5]. How-
ever, serum levels or absolute urinary excretion of HGA showed no
difference and there were also no differences in the tested AKU
symptoms [5]. This indicates that there is no direct effect of HGD
variant type on the variability of the AKU phenotype. Most likely,
AKU variability can depend on the diet and the effectivity of renal
function, which is crucial to the elimination of accumulated HGA
from the patient’s body [5, 9]. It is also possible/likely that the
differences in tissue characteristics between subjects play also a part
in the development/progression/worsening of ochronosis. High
variability in the levels of HGA (u-HGA (mmol/24 h) measured by gas
chromatography and mass spectrometric analysis) was observed
also in our cohort, even among the patients carrying the same
mutations (Supplementary Table 1).

Distribution of different HGD variants in different populations does
not reflect the severity of AKU; still, it is interesting from population
genetics point of view. As can be seen in Table 1, several variants
found in Russia are found with higher prevalence also in other
countries, such as Slovakia (c481G>A, c.16-1G>A, c342+1G>A,
cA457dupG, c688C>T, c.808G>A), Turkey (c.175delA, c.808G>A,
¢.1007-2A>T), or in USA and Germany (c.1102A>G) (Table 1). It might
be interesting to investigate the origin of these AKU alleles using
haplotype analysis but it is beyond the focus of this report.

Until recently, painkillers and joint replacement surgery in
advanced stages have been the only palliative treatments available
for patients suffering from AKU [10]. Based on the recently published
results of the Suitability Of Nitisinone In Alkaptonuria 2 clinical study
[11], the European Medicines Agency authorized Swedish Orphan
Blovitrum to use their product Orfadin® (Nitisinone) in AKU; on 22
October 2020, the European Commission approved it for the
treatment of adult patients with AKU. Currently, nitisinone represents
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the only promising HGA-lowering therapy. Occasionally, several
young individuals are reported with early signs of AKU, usually ocular
ochronosis, but also early arthritis has been observed in 15-year-old
patients [12-14]. As ochronosis might start at an early age, nitisinone
should be administrated early as well; however, a pediatric study is
needed to assess its safety and the earliest age at which it can be
taken. Our cohorts include several Russian child/young age patients;
they might be good candidates for such a study in the future.
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