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A de novo mutation in mitochondrial ATPsynthase subunit α
causes a life threatening disease in neonates which heals in
infancy
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Mitochondrial (mt) ATP is produced by oxidative phosphorylation
(OXPHOS) through the mt-ATP synthase, or complex V (CV; EC
3.6.3.14). CV is embedded in the inner mitochondrial membrane
(IMM) and synthetises ATP in the mitochondrial matrix, using the
energy provided by the proton-motive force generated by
respiration [1]. To date, numerous mutations have been found in
mtDNA-related subunits a (encoded by MT-ATPase6) and A6L
(encoded by MT-ATPase8), as well as a handful of mutations in
nuclear-encoded gene products related to CV, i.e., a structural
subunit, subunit epsilon [2], an assembly factor, ATP12 [3], and an
ancillary factor, TMEM70 [4], which seems to play a double role in
the assembly of both CI and CV [5]. Most of these mutations give
rise to severe mitochondrial disorders. For instance several
60–70% heteroplasmic mutations in MT-ATPase6 (and more rarely
MT-ATPase8) are associated with adult-onset NARP (Neuropathy,
Ataxia, and Retinitis Pigmentosa, OMIM #551500) whereas
infantile MILS (Maternally Inherited Leigh Syndrome, OMIM
#256000) occurs when >70% heteroplasmy affects the same
genes; neonatal mitochondrial encephalo(cardio)myopathy and
dysmorphic features are reported in patients with ATP12 (OMIM
*608918) or TMEM70 (OMIM #614052) nuclear gene mutations
[3, 4]. Neonatal lactic acidosis 3-methylglutaconic aciduria, mild
mental retardation, and peripheral neuropathy were reported in a
patient with a homozygous mutation of the structural epsilon
subunit [2].
ATPsynthase consists of the F1 particle, projecting in the

mitochondrial matrix, and the F0 particle, bound to the IMM. F1 is
composed of a flapping dome made of three copies, each
consisting of a heterodimer formed by one subunit α and one
subunit β, in contact to each other. The dome is in contact with an
asymmetric central stalk composed of subunits γ, δ and ε. F0
consists of a subunit c-ring (eight copies in bovine) [6], and one
copy each of subunits a, b, d, F6 and the oligomycin sensitivity-
conferring protein (OSCP). Subunits b, d, F6 and OSCP form the
peripheral stalk (the “stator”), which lies to one side of the
complex and “fixates” the rotary engine to the cristae membrane.
A number of additional subunits (e, f, g, and A6L), all spanning the
membrane, are associated with F0 [7, 8].
The energy sustaining the condensation of ATP from ADP and Pi

in F1 is derived from the dissipation of a proton-based
electrochemical gradient (ΔP) formed by respiration. Protons pass

from the intermembrane space into the matrix through an
obliquely oriented channel largely formed by subunit a in the F0
[9]. The electrochemcal gradient provides a proton-motive force
formed by a chemical differential (ΔpH) and an electrical
membrane potential (Δψm) [10]. The released energy provided
by the cross of protons through the subunit a channel causes
rotation of the c-ring [11], transmitted to the central stalk [12], to
which it is attached. Rotation of subunit γ within the F1 α3β3
hexamer provides energy for ATP synthesis (“rotary catalysis”) [8]
through a “binding-change” mechanism [13]. Either ATP synthesis
or ATP hydrolysis occur at the three catalytic sites, at the interface
between each β subunit with an adjacent α subunit. For ATP
synthesis, each site switches cooperatively through conformations
in which ADP and Pi bind, ATP is formed, and then released. ATP
hydrolysis uses the same pathway, but in reverse [14]. These
transitions are caused by rotation of the γ subunit. Every full
rotation produces 3 ATPs.
In addition to the very few mutations in nuclear genes

associated with impaired CV [15], Lines et al. [16] describe, in
the present issue of the EJHG, three unrelated infants with the
same de novo, heterozygous mutation, c.206 G > A [p.(Arg207His)],
in ATP5F1A, encoding the α-subunit of CV. Affected neonates
showed very severe lactic acidosis and multiorgan failure. The
identification of sporadic cases due to de novo heterozygous
mutations is becoming increasingly frequent with the systematic
utilization of deep exome screening. An example reported by
Lines et al are several heterozygous de novo mutations in ANT1,
encoding the muscle-brain specific ATP/ADP mitochondrial
translocator, recently reported in unrelated neonates with fatal
multiorgan failure. The presence of three α subunits in F1 may
perhaps explain the pathogenicity of the heterozygous Arg207His
change, but more work is warranted to establish whether this
change is permissive for extra-uterine survival, vs. other changes
that are embryonic lethal, or additional missense mutations could
be identified in the same ATP5F1A gene.
According to Lines et al. [16], the residue Arg207 has a positively

charged sidechain impinging the α-β interface, close to the β-
subunit active site. At pH 7.8, which is similar to the pH in the
matrix interface of the IMM, the replaced His207 would create a
negatively-charged side chain interfering with the stability of the α-
β interface. This change causes reduction of both CV activities and
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amount. Thus, a combination of negative dominance and
instability of the mutant structures may concur to the overall
failure of CV activity due to the Arg207His change However, the
most surprising result of this study is perhaps that all three patients
underwent a rapidly and robust improvement, until virtual
normalization of the clinical features within infancy. The paper
does not report whether this very relevant clinical observation was
associated with the recovery of the biochemical proficiency and
structural normalization of the initial profound decrease of CV
amount through correction or exclusion of the aberrant α-subunit
containing structures observed in the initial natural history.
Additional investigation may, for instance, show that the mutant
gene expression becomes suppressed, or the normal gene is
overexpressed, or other mechanisms have produced the sponta-
neous clinical improvement, starting from potentially fatal neonatal
conditions. As mentioned by Lines et al. [16] at least two additional
disorders are associated with spontaneous recovery in mitochon-
drial disease. The first (OMIM *610230) are missense homozygous
or compound heterozygous mutations associated with transient
liver failure in nucleus-encoded TRMU, involved in mt-tRNA
modification, important for mitochondrial translation [17]. The
second is a transient, neonatal mitochondrial myopathy (OMIM
#500009) characterized by severe COX deficiency in muscle with
lactic acidosis, which recovers spontaneously after 1 year of age.
This is due to homoplasmic 14674 T>C transition in MTTE,
encoding the mitochondrial tRNAGlu [18]. The still unknown
mechanistic events leading to the intriguing reversibility of these
conditions warrants future experimental work based on suitable
in vitro, cellular and animal models.
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