Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a DLG3 stop mutation in the MRX20 family

Abstract

Here, we identified the causal mutation in the MRX20 family, one of the larger X-linked pedigrees that have been described in which no gene had been identified up till now. In 1995, the putative disease gene had been mapped to the pericentromeric region on the X chromosome, but no follow-up studies were performed. Here, whole exome sequencing (WES) on two affected and one unaffected family member revealed the c.195del/p.(Thr66ProfsTer55) mutation in the DLG3 gene (NM_021120.4) that segregated with the affected individuals in the family. DLG3 mutations have been consequently associated with intellectual disability and are a plausible explanation for the clinical abnormalities observed in this family. In addition, we identified two other variants co-segregating with the phenotype: a stop gain mutation in SSX1 (c.358G>T/p.(Glu120Ter)) (NM_001278691.2) and a nonsynonymous SNV in USP27X (c.56 A>G/p.(Gln19Arg)) (NM_001145073.3). RNA sequencing revealed 14 differentially expressed genes (p value < 0.1) in 7 affected males compared to 4 unaffected males of the family, including four genes known to be associated with neurological disorders. Thus, in this paper we identified the c.195del/p.(Thr66ProfsTer55) mutation in the DLG3 gene (NM_021120.4) as likely responsible for the phenotype observed in the MRX20 family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigree of the MRX20 family.
Fig. 2: DNA sequencing chromatogram of the variants found in DLG3, SSX1, and USP27X in the MRX20 family.
Fig. 3: Differential expression and enriched pathway analysis.
Fig. 4: Representation of the synapse-associate protein 102 (SAP102) encoded by the Discs Large MAGUK Scaffold Protein 3 (DLG3) gene.

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available due consent restrictions, but are available from the corresponding author on reasonable request.

References

  1. American Psychiatric Association, Diagnostic and statistical manual of mental disorders: DSM-5. 5th edition ed. Arlington, Va: American Psychiatric Association. xliv, 947 pages (2013).

  2. Leonard H, Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev. 2002;8:117–34.

    Article  PubMed  Google Scholar 

  3. Neri G, Schwartz CE, Lubs HA, Stevenson RE. X-linked intellectual disability update 2017. Am J Med Genet A. 2018;176:1375–88.

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Bokhoven H. Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet. 2011;45:81–104.

    Article  PubMed  Google Scholar 

  5. Raymond FL. X linked mental retardation: a clinical guide. J Med Genet. 2006;43:193–200.

    Article  CAS  PubMed  Google Scholar 

  6. Lazzarini A, Stenroos ES, Lehner T, McKoy V, Gold B, McCormack MK, et al. Short tandem repeat polymorphism linkage studies in a new family with X-linked mental retardation (MRX20). Am J Med Genet. 1995;57:552–7.

    Article  CAS  PubMed  Google Scholar 

  7. Helsmoortel C, Vandeweyer G, Ordoukhanian P, Van Nieuwerburgh F, Van der Aa N, Kooy RF. Challenges and opportunities in the investigation of unexplained intellectual disability using family-based whole-exome sequencing. Clin Genet. 2015;88:140–8.

    Article  CAS  PubMed  Google Scholar 

  8. Vandeweyer G, Van Laer L, Loeys B, Van den Bulcke T, Kooy RF. VariantDB: a flexible annotation and filtering portal for next generation sequencing data. Genome Med. 2014;6:74.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jones JR. Nonrandom X chromosome inactivation detection. Curr Protoc Hum Genet. 2014;80:9 7 1–9 7.

    PubMed  Google Scholar 

  10. D’Incal CP, Cappuyns E, Choukri K, Szrama K, De Man K, Aa NVD, et al. In search of the hidden protein: optimization of detection strategies for autism-associated activity-dependent neuroprotective protein (ADNP) mutants. Res Square. 2022; https://doi.org/10.21203/rs.3.rs-1954095/v1.

  11. Bushnell B. BBMap: a fast, accurate, splice-aware aligner. In Proceedings of 9th annual genomics of energy & environment meeting; United States (2014).

  12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  13. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  14. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–W205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014;10:e1003731.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liska O, Bohar B, Hidas A, Korcsmaros T, Papp B, Fazekas D, et al. TFLink: an integrated gateway to access transcription factor-target gene interactions for multiple species. Database. 2022;2022:baac083.

  18. Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY, Besseling JA, et al. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum Mol Genet. 2013;22:1960–70.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Ha T, Pham D, Shaw M, Mangelsdorf M, Friend KL, et al. A non-coding variant in the 5′ UTR of DLG3 attenuates protein translation to cause non-syndromic intellectual disability. Eur J Hum Genet. 2016;24:1612–6.

    Article  CAS  PubMed Central  Google Scholar 

  20. Matis T, Michaud V, Van-Gils J, Raclet V, Plaisant C, Fergelot P, et al. Triple diagnosis of Wiedemann-Steiner, Waardenburg and DLG3-related intellectual disability association found by WES: a case report. J Gene Med. 2020;22:e3197.

    Article  CAS  PubMed  Google Scholar 

  21. Philips AK, Siren A, Avela K, Somer M, Peippo M, Ahvenainen M, et al. X-exome sequencing in Finnish families with intellectual disability-four novel mutations and two novel syndromic phenotypes. Orphanet J Rare Dis. 2014;9:49.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tzschach A, Grasshoff U, Beck-Woedl S, Dufke C, Bauer C, Kehrer M, et al. Next-generation sequencing in X-linked intellectual disability. Eur J Hum Genet. 2015;23:1513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, et al. Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet. 2004;75:318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanni G, van Esch H, Bensalem A, Saillour Y, Poirier K, Castelnau L, et al. A novel mutation in the DLG3 gene encoding the synapse-associated protein 102 (SAP102) causes non-syndromic mental retardation. Neurogenetics. 2010;11:251–5.

    Article  CAS  PubMed  Google Scholar 

  25. Sandestig A, Green A, Aronsson J, Ellnebo K, Stefanova M. A novel DLG3 mutation expanding the phenotype of X-linked intellectual disability caused by DLG3 nonsense variants. Mol Syndromol. 2020;10:281–5.

    Article  PubMed  Google Scholar 

  26. Gieldon L, Mackenroth L, Betcheva-Krajcir E, Rump A, Beck-Wodl S, Schallner J, et al. Skewed X-inactivation in a family with DLG3-associated X-linked intellectual disability. Am J Med Genet A. 2017;173:2545–50.

    Article  CAS  PubMed  Google Scholar 

  27. Plenge RM, Stevenson RA, Lubs HA, Schwartz CE, Willard HF. Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet. 2002;71:168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron. 1996;17:255–65.

    Article  CAS  PubMed  Google Scholar 

  29. Consortium GT. Erratum: Genetic effects on gene expression across human tissues. Nature. 2018;553:530.

    Article  Google Scholar 

  30. Lopez-Hernandez A, Sberna S, Campaner S. Emerging principles in the transcriptional control by YAP and TAZ. Cancers. 2021;13:4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayashi R, Goto Y, Ikeda R, Yokoyama KK, Yoshida K. CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation. J Biol Chem. 2006;281:35633–48.

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Ippolito GC, Wall JK, Niu T, Probst L, Lee BS, et al. Functional studies of BCL11A: characterization of the conserved BCL11A-XL splice variant and its interaction with BCL6 in nuclear paraspeckles of germinal center B cells. Mol Cancer. 2006;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beckmann H, Su LK, Kadesch T. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 1990;4:167–79.

    Article  CAS  PubMed  Google Scholar 

  34. Dias C, Estruch SB, Graham SA, McRae J, Sawiak SJ, Hurst JA, et al. BCL11A haploinsufficiency causes an intellectual disability syndrome and dysregulates transcription. Am J Hum Genet. 2016;99:253–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lehalle D, Vabres P, Sorlin A, Bierhals T, Avila M, Carmignac V, et al. De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features. J Med Genet. 2020;57:808–19.

    Article  CAS  PubMed  Google Scholar 

  36. Paulraj P, Bosworth M, Longhurst M, Hornbuckle C, Gotway G, Lamb AN, et al. A novel homozygous deletion within the FRY gene associated with nonsyndromic developmental delay. Cytogenet Genome Res. 2019;159:19–25.

    Article  CAS  PubMed  Google Scholar 

  37. Huang Q, Zhang YF, Li LJ, Dammer EB, Hu YB, Xie XY, et al. Adult-onset neuronal ceroid lipofuscinosis with a novel DNAJC5 mutation exhibits aberrant protein palmitoylation. Front Aging Neurosci. 2022;14:829573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sans N, Petralia RS, Wang YX, Blahos J 2nd, Hell JW, Wenthold RJ. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci. 2000;20:1260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Won S, Levy JM, Nicoll RA, Roche KW. MAGUKs: multifaceted synaptic organizers. Curr Opin Neurobiol. 2017;43:94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cuthbert PC, Stanford LE, Coba MP, Ainge JA, Fink AE, Opazo P, et al. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J Neurosci. 2007;27:2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen BS, Gray JA, Sanz-Clemente A, Wei Z, Thomas EV, Nicoll RA, et al. SAP102 mediates synaptic clearance of NMDA receptors. Cell Rep. 2012;2:1120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei Z, Wu G, Chen BS. Regulation of SAP102 synaptic targeting by phosphorylation. Mol Neurobiol. 2018;55:6215–26.

    Article  CAS  PubMed  Google Scholar 

  43. Roszkowska M, Krysiak A, Majchrowicz L, Nader K, Beroun A, Michaluk P, et al. SRF depletion in early life contributes to social interaction deficits in the adulthood. Cell Mol Life Sci. 2022;79:278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaiwongkot A, Kitkumthorn N, Srisuttee R, Buranapraditkun S. Cellular expression profiles of Epstein-Barr virus-transformed B-lymphoblastoid cell lines. Biomed Rep. 2020;13:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu C, Si W, Tu C, Tian S, He X, Wang S, et al. Deficiency of primate-specific SSX1 induced asthenoteratozoospermia in infertile men and cynomolgus monkey and tree shrew models. Am J Hum Genet. 2023;110:516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McBride MJ, Mashtalir N, Winter EB, Dao HT, Filipovski M, D’Avino AR, et al. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. Nat Struct Mol Biol. 2020;27:836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Centore RC, Sandoval GJ, Soares LMM, Kadoch C, Chan HM. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 2020;36:936–50.

    Article  CAS  PubMed  Google Scholar 

  48. Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP, et al. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 2016;21:133–48.

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi T, Iwamoto Y, Takashima K, Isomura A, Kosodo Y, Kawakami K, et al. Deubiquitinating enzymes regulate Hes1 stability and neuronal differentiation. FEBS J. 2015;282:2411–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cheryl S. Reid for family consultation.

Funding

The authors acknowledge the support of the Research Fund of the University of Antwerp OEC-Methusalem grant “GENOMED”.

Author information

Authors and Affiliations

Authors

Contributions

Clinical examination and counseling of the family were performed by AL and MKM. JH was responsible for the conceptualization and overview of the experiments under the supervision of RFK and GV. Primers were developed by JH and EE. Experiments were executed by JH, EE, KEVR, and BC. GV analyzed the WES data. Differential expression was analyzed by LM. Pathway enrichment analysis and identification of enriched transcription factors were performed by JH and LM. Analysis of RT-PCR data and preparation of the corresponding figures were performed by JH and CPD. Western Blotting was performed by CPD. JH drafted the manuscript, which was reviewed and approved by all authors.

Corresponding author

Correspondence to R. Frank Kooy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The cell lines used in this study were donated with informed consent to the Human Genetic Mutant Cell Repository at the Coriell Institute (Camden, New Jersey, USA) for research purposes.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyghebaert, J., Mateiu, L., Elinck, E. et al. Identification of a DLG3 stop mutation in the MRX20 family. Eur J Hum Genet 32, 317–323 (2024). https://doi.org/10.1038/s41431-024-01537-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-024-01537-7

This article is cited by

Search

Quick links