Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the cytokine TNF-α in choroidal neovascularization: a systematic review

Abstract

TNF-α is a multifunctional cytokine produced by macrophages and T cells. This proinflammatory substance is considered to play a crucial role in the inflammatory process associated with age-related macular degeneration (AMD). The current review aimed to describe evidence for an association between TNF-α and AMD reported in various studies. The MEDLINE, Embase, PubMed and Global Health databases were systematically searched to identify studies that investigated the role of TNF-α in AMD. A total of 24 studies were deemed eligible for the review. To better understand and integrate the evidence, the studies were categorised into four major groups in relation to the role of TNF-α in AMD: (1) those examining biological signalling pathways through which TNF-α exerts its effect; (2) investigating levels of TNF-α; (3) exploring the genetics underlying the role of TNF-α; and (4) assessing anti-TNF-α agents as potential treatments for AMD. TNF-α is thought to directly contribute to choroidal neovascularization (CNV) enhancement and has been shown to exert its effect by augmenting the inflammatory response through other signalling pathways. Additionally, different genes have been found to be associated with activities linked to TNF-α in AMD. Overall, measurement of systemic and local levels of TNF-α has not yielded consistent findings, with variable conclusions for the role of anti-TNF-α agents in remission of AMD symptoms. The role of TNF-α in neovascular AMD is not clear, and not all anti-TNF-α agents are safe. The potential of this cytokine in atrophic AMD has not been examined. Future studies should address these unresolved questions.

摘要

TNF-α是由巨噬细胞和T细胞产生的多功能细胞因子。其在与年龄相关性黄斑变性 (AMD) 的炎症过程中起重要作用。本综述旨在描述各种研究中报告的TNF-α和AMD相关联的证据。对MEDLINE、Embase、PubMed和全球健康数据库进行搜索, 确定有关TNF-α在AMD中的作用的研究。共有24项研究符合本综述条件。为更好地理解和整合证据, 根据TNF-α在AMD中的作用, 将文献分为四大类: (1) TNF-α发挥作用的细胞信号通路; (2) TNF-α的水平; (3) 探索TNF-α潜在的遗传学作用; (4) 评估抗TNF-α药物作为AMD的潜在治疗。TNF-α可直接导致脉络膜新生血管 (CNV), 并且通过其他信号通路增强炎症反应发挥其作用。此外, 发现不同基因与TNF-α在AMD的相关病理作用有关。总之, 对于TNF-α全身和局部水平还无一致结果, 对于抗TNF-α药物在缓解AMD症状的作用方面得出了多种结论。TNF-α抗新生血管的作用还不清楚, 并非所有抗TNF-α药物都是安全的。这种细胞因子在萎缩性AMD中的潜力尚未得到研究。未来的研究应解决这些尚未解决的问题。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data extraction.

Similar content being viewed by others

References

  1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.

    PubMed  Google Scholar 

  2. Kawasaki R, Yasuda M, Song SJ, Chen SJ, Jonas JB, Wang JJ, et al. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2010;117:921–7.

    PubMed  Google Scholar 

  3. Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology. 1995;102:1450–60.

    PubMed  CAS  Google Scholar 

  4. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844–51.

    PubMed  Google Scholar 

  5. Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Inter Aging. 2017;12:1313–30.

    CAS  Google Scholar 

  6. Collier JAB, Collier J, Longmore M, Longmore JM, Amarakone K. Oxford Handbook of Clinical Specialties. (OUP Oxford, New York, NY, 2013).

  7. Chernykh V, Shevchenko A, Konenkov V, Prokofiev V, Eremina A, Trunov A. TNF-α gene polymorphisms: association with age-related macular degeneration in Russian population. Int J Ophthalmol. 2019;12:25–9.

    PubMed  PubMed Central  Google Scholar 

  8. Wang H, Han X, Wittchen ES, Hartnett ME. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation. Mol Vis. 2016;22:116–28.

    PubMed  PubMed Central  Google Scholar 

  9. Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119:1388–98.

    PubMed  Google Scholar 

  10. Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res. 2001;73:887–96.

    PubMed  CAS  Google Scholar 

  11. Mullins RF, Dewald AD, Streb LM, Wang K, Kuehn MH, Stone EM. Elevated membrane attack complex in human choroid with high risk complement factor H genotypes. Exp Eye Res. 2011;93:565–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Sakurai E, Anand A, Ambati BK, Van Rooijen N, Ambati J. Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3578–85.

    PubMed  Google Scholar 

  13. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA. 2005;102:7227–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Fernández-Vega B, Fernández-Vega Á, Rangel CM, Nicieza J, Villota-Deleu E, Vega JA, et al. Blockade of tumor necrosis factor-alpha: a role for adalimumab in neovascular age-related macular degeneration refractory to anti-angiogenesis therapy? Case Rep. Ophthalmol. 2016;7:154–62.

    PubMed  PubMed Central  Google Scholar 

  15. Al-Gayyar MM, Elsherbiny NM. Contribution of TNF-α to the development of retinal neurodegenerative disorders. Eur Cytokine Netw. 2013;24:27–36.

    PubMed  CAS  Google Scholar 

  16. Cordero-Coma M, Sobrin L. Anti–tumor necrosis factor-α therapy in uveitis. Surv Ophthalmol. 2015;60:575–89.

    PubMed  Google Scholar 

  17. Yu Y, Reynolds R, Rosner B, Daly MJ, Seddon JM. Prospective assessment of genetic effects on progression to different stages of age-related macular degeneration using multistate Markov models. Invest Ophthalmol Vis Sci. 2012;53:1548–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Nagineni CN, Kommineni VK, William A, Detrick B, Hooks JJ. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol. 2012;227:116–26.

    PubMed  CAS  Google Scholar 

  19. Liu J, Tian Z, Li J, Zhao G. Associations of IL-8 gene polymorphisms and IL-8 levels with predisposition to age-related macular degeneration: a meta-analysis. Aging Clin Exp Res. 2020;32:2705.

    PubMed  Google Scholar 

  20. Mimura T, Funatsu H, Noma H, Shimura M, Kamei Y, Yoshida M, et al. Aqueous humor levels of cytokines in patients with age-related macular degeneration. Ophthalmologica. 2019;241:81–89.

    PubMed  CAS  Google Scholar 

  21. Jing L, Su L, Ring BZ. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review. PLoS One. 2014;9:e97522.

    PubMed  PubMed Central  Google Scholar 

  22. Theodossiadis PG, Markomichelakis NN, Sfikakis PP. Tumor necrosis factor antagonists: preliminary evidence for an emerging approach in the treatment of ocular inflammation. Retina. 2007;27:399–413.

    PubMed  Google Scholar 

  23. MacEwan DJ. TNF ligands and receptors-a matter of life and death. Br J Pharm. 2002;135:855–75.

    CAS  Google Scholar 

  24. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily:structure-function relationship(s). Microsc Res Tech. 2000;50:184–95.

    PubMed  CAS  Google Scholar 

  25. Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: focus on RNA-binding proteins. Prog Retin Eye Res. 2010;29:610–21.

    PubMed  CAS  Google Scholar 

  26. Sfikakis PP, Kollias G. Tumor necrosis factor biology in experimental and clinical arthritis. Curr Opin Rheumatol. 2003;15:380–6.

    PubMed  CAS  Google Scholar 

  27. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1999;40:1891–8.

    PubMed  CAS  Google Scholar 

  28. Bellezza I. Oxidative stress in age-related macular degeneration: Nrf2 as therapeutic target. Front Pharm. 2018;9:1280.

    CAS  Google Scholar 

  29. Thornalley PJ. The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochem Soc Trans. 2003;31:1341–2.

    PubMed  CAS  Google Scholar 

  30. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, et al. Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol. 1998;116:1629–32.

    PubMed  CAS  Google Scholar 

  31. Sharif U, Mahmud NM, Kay P, Yang YC, Harding SP, Grierson I, et al. Advanced glycation end products-related modulation of cathepsin L and NF-κB signalling effectors in retinal pigment epithelium lead to augmented response to TNFα. J Cell Mol Med. 2019;23:405–16.

    PubMed  CAS  Google Scholar 

  32. Glenn JV, Mahaffy H, Wu K, Smith G, Nagai R, Simpson DA, et al. Advanced glycation end product (AGE) accumulation on Bruch’s membrane: links to age-related RPE dysfunction. Invest Ophthalmol Vis Sci. 2009;50:441–51.

    PubMed  Google Scholar 

  33. Suk K, Kim SY, Kim H. Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells: involvement of NF-kB pathway in the regulatory processes. Immunol Lett. 2001;77:79–85.

    PubMed  CAS  Google Scholar 

  34. YouTube. NF-κB signal pathway. 2019. https://www.youtube.com/watch?v=Ac1Q5yK6A50.

  35. Im E, Kazlauskas A. The role of cathepsins in ocular physiology and pathology. Exp Eye Res. 2007;84:383–8.

    PubMed  CAS  Google Scholar 

  36. Wang X, Shang QL, Ma JX, Liu SX, Wang CX, Ma C. Complement factor B knockdown by short hairpin RNA inhibits laser-induced choroidal neovascularization in rats. Int J Ophthalmol. 2020;13:382–9.

    PubMed  PubMed Central  Google Scholar 

  37. Bora NS, Kaliappan S, Jha P, Xu Q, Sohn JH, Dhaulakhandi DB, et al. Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J Immunol. 2006;177:1872–8.

    PubMed  CAS  Google Scholar 

  38. Wang J, Ohno-Matsui K, Yoshida T, Shimada N, Ichinose S, Sato T, et al. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: another mechanism of complement activation in age-related macular degeneration. J Cell Physiol. 2009;220:119–28.

    PubMed  CAS  Google Scholar 

  39. Huang Y, Krein PM, Muruve DA, Winston BW. Complement factor B gene regulation: synergistic effects of TNF-alpha and IFN-gamma in macrophages. J Immunol. 2002;169:2627–35.

    PubMed  CAS  Google Scholar 

  40. Kawakami Y, Watanabe Y, Yamaguchi M, Sakaguchi H, Kono I, Ueki A. TNF-alpha stimulates the biosynthesis of complement C3 and factor B by human umbilical cord vein endothelial cells. Cancer Lett. 1997;116:21–26.

    PubMed  CAS  Google Scholar 

  41. Chung EJ, Efstathiou NE, Konstantinou EK, Maidana DE, Miller JW, Young LH, et al. AICAR suppresses TNF-α-induced complement factor B in RPE cells. Sci Rep. 2017;7:17651.

    PubMed  PubMed Central  Google Scholar 

  42. Cha DM, Woo SJ, Kim HJ, Lee C, Park KH. Comparative analysis of aqueous humor cytokine levels between patients with exudative age-related macular degeneration and normal controls. Invest Ophthalmol Vis Sci. 2013;54:7038–44.

    PubMed  CAS  Google Scholar 

  43. Liu F, Ding X, Yang Y, Li J, Tang M, Yuan M, et al. Aqueous humor cytokine profiling in patients with wet AMD. Mol Vis. 2016;22:352–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Cao S, Ko A, Partanen M, Pakzad-Vaezi K, Merkur AB, Albiani DA, et al. Relationship between systemic cytokines and complement factor H Y402H polymorphism in patients with dry age-related macular degeneration. Am J Ophthalmol. 2013;156:1176–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhu D, Yang DY, Guo YY, Zheng YF, Li JL, Wang B, et al. Intracameral interleukin 1β, 6, 8, 10, 12p, tumor necrosis factor α and vascular endothelial growth factor and axial length in patients with cataract. PLoS One. 2015;10:e0117777.

    PubMed  PubMed Central  Google Scholar 

  46. Minaker SA, Mason RH, Luna GL, Bapat P, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in neovascular age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol. 2020;99:134–55.

    PubMed  Google Scholar 

  47. Ioanna Z, Christian S, Christian G, Daniel B. Plasma levels of hypoxia-regulated factors in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2018;256:325–32.

    PubMed  CAS  Google Scholar 

  48. Nassar K, Grisanti S, Elfar E, Lüke J, Lüke M, Grisanti S. Serum cytokines as biomarkers for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2015;253:699–704.

    PubMed  CAS  Google Scholar 

  49. Spindler J, Zandi S, Pfister IB, Gerhardt C, Garweg JG. Cytokine profiles in the aqueous humor and serum of patients with dry and treated wet age-related macular degeneration. PLoS One. 2018;13:e0203337.

    PubMed  PubMed Central  Google Scholar 

  50. Khan AH, Pierce CO, De Salvo G, Griffiths H, Nelson M, Cree AJ, et al. The effect of systemic levels of TNF-alpha and complement pathway activity on outcomes of VEGF inhibition in neovascular AMD. Eye (Lond). 2022;36:2192–9.

    PubMed  CAS  Google Scholar 

  51. Rezar-Dreindl S, Sacu S, Eibenberger K, Pollreisz A, Bühl W, Georgopoulos M, et al. The intraocular cytokine profile and therapeutic response in persistent neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57:4144–50.

    PubMed  Google Scholar 

  52. Miao H, Tao Y, Li XX. Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization. Mol Vis. 2012;18:574–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Faber C, Jehs T, Juel HB, Singh A, Falk MK, Sørensen TL, et al. Early and exudative age-related macular degeneration is associated with increased plasma levels of soluble TNF receptor II. Acta Ophthalmol. 2015;93:242–7.

    PubMed  CAS  Google Scholar 

  54. Subhi Y, Nielsen MK, Molbech CR, Oishi A, Singh A, Nissen MH, et al. Plasma markers of chronic low-grade inflammation in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Acta Ophthalmol. 2019;97:99–106.

    PubMed  CAS  Google Scholar 

  55. Bonyadi MH, Bonyadi M, Ahmadieh H, Fotuhi N, Shoeibi N, Saadat S, et al. Tumor necrosis factor gene polymorphisms in advanced non-exudative age-related macular degeneration. J Ophthalmic Vis Res. 2015;10:155–9.

    PubMed  PubMed Central  Google Scholar 

  56. Wan L, Lin HJ, Tsai Y, Lee CC, Tsai CH, Tsai FJ, et al. Tumor necrosis factor-α gene polymorphisms in age-related macular degeneration. Retina. 2010;30:1595–600.

    PubMed  Google Scholar 

  57. Xu J, Zhu D, He S, Spee C, Ryan SJ, Hinton DR. Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age-related macular degeneration. FASEB J. 2011;25:2221–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS One. 2017;12:e0173716.

    PubMed  PubMed Central  Google Scholar 

  59. Olson JL, Courtney RJ, Mandava N. Intravitreal infliximab and choroidal neovascularization in an animal model. Arch Ophthalmol. 2007;125:1221–4.

    PubMed  CAS  Google Scholar 

  60. Kirman I, Whelan RL, Nielsen OH. Infliximab: mechanism of action beyond TNF-alpha neutralization in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2004;16:639–41.

    PubMed  CAS  Google Scholar 

  61. Theodossiadis PG, Liarakos VS, Sfikakis PP, Vergados IA, Theodossiadis GP. Intravitreal administration of the anti-tumor necrosis factor agent infliximab for neovascular age-related macular degeneration. Am J Ophthalmol. 2009;147:825–30.

    PubMed  CAS  Google Scholar 

  62. Markomichelakis NN, Theodossiadis PG, Sfikakis PP. Regression of neovascular age-related macular degeneration following infliximab therapy. Am J Ophthalmol. 2005;139:537–40.

    PubMed  Google Scholar 

  63. Van Hagen PM, Baarsma GS, Van Bilsen CE, Kuijpers RW, Van Laar JA, Van der Ent M, et al. A noncontrolled trial of anti-TNF-α chimeric monoclonal antibody (infliximab, Remicade(®)) in exudative age-related macular degeneration. Acta Ophthalmol. 2014;92:e691–2.

    PubMed  Google Scholar 

  64. Wu L, Arevalo JF, Hernandez-Bogantes E, Regatieri CV, Roca JA, Farah ME. Intravitreal tumor necrosis factor-alpha inhibitors for neovascular age-related macular degeneration suboptimally responsive to antivascular endothelial growth factor agents: a pilot study from the Pan American Collaborative Retina Study Group. J Ocul Pharm Ther. 2013;29:366–71.

    CAS  Google Scholar 

  65. Arias L, Caminal JM, Badia MB, Rubio MJ, Catala J, Pujol O. Intravitreal infliximab in patients with macular degeneration who are nonresponders to antivascular endothelial growth factor therapy. Retina. 2010;30:1601–8.

    PubMed  Google Scholar 

  66. Semeraro F, Romano MR, Danzi P, Angi M, Costagliola C. Intravitreal infliximab for choroidal neovascularization in patients refractory to conventional treatments. Int J Immunopathol Pharm. 2013;26:765–8.

    CAS  Google Scholar 

  67. Giganti M, Beer PM, Lemanski N, Hartman C, Schartman J, Falk N. Adverse events after intravitreal infliximab (Remicade). Retina. 2010;30:71–80.

    PubMed  Google Scholar 

  68. Rosenfeld PJ, Goodman KW. When is off-label drug use in the patient’s best interest? Am J Ophthalmol. 2009;147:761–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zois Papadopoulos.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Search terms and articles retrieved from databases

Appendix 1 Search terms and articles retrieved from databases

 

Database

Search terms

Results

1

Embase

1974 to 2022 week 17

1# exp retina macula age-related degeneration/or exp age-related macular degeneration/or exp

“neovascularization (pathology)”

68090

2# exp age-related macular degeneration/or age-related maculopathy

10376

3# exp macular degeneration

16175

4# tumour necrosis factor alpha.mp. or exp tumour necrosis factor

140867

5# (1 OR 2 OR 3)

74434

6# 4 AND 5

703

2

Ovid MEDLINE

1947 to 26 April 2022

1# exp retina macula age-related degeneration/or exp age-related macular degeneration/or exp “neovascularization (pathology)”

23839

2# exp age-related macular degeneration/or age-related maculopathy

23976

3# exp macular degeneration

23839

4# tumour necrosis factor alpha.mp. or exp tumour necrosis factor

129129

5# (1 OR 2 OR 3)

23976

6# 4 AND 5

95

2

Global Health 1973 to 2022 Week 17

1# exp retina macula age-related degeneration/or exp age-related macular degeneration/or exp “neovascularization (pathology)”

0

2# exp age-related macular degeneration/or age-related maculopathy

217

3# exp macular degeneration

2071

4# tumour necrosis factor alpha.mp. or exp tumour necrosis factor

6125

5# (1 OR 2 OR 3)

2074

6# 4 AND 5

0

2# “macular degeneration”[MeSH Terms] OR agerelated macular degeneration [Text Word])”

19467

3# “tumour necrosis factor-alpha”[MeSH Terms]

123441

5# (“Age-related macular degeneration MeSH major topics” “Macular Degeneration”[Majr]) AND “Tumour Necrosis Factor-alpha”[Mesh]

90

2

PubMed

1973 to 2022 Week 17

1# Age-related macular degeneration MeSH major topics

32609

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, Z. The role of the cytokine TNF-α in choroidal neovascularization: a systematic review. Eye 38, 25–32 (2024). https://doi.org/10.1038/s41433-023-02634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02634-5

Search

Quick links