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BACKGROUND: Pathological myopia (PM) is a major cause of worldwide blindness and represents a serious threat to eye health 
globally. Artificial intelligence (AI)-based methods are gaining traction in ophthalmology as highly sensitive and specific tools for 
screening and diagnosis of many eye diseases. However, there is currently a lack of high-quality evidence for their use in the 
diagnosis of PM.
METHODS: A systematic review and meta-analysis of studies evaluating the diagnostic performance of AI-based tools in PM was 
conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. Five 
electronic databases were searched, results were assessed against the inclusion criteria and a quality assessment was conducted 
for included studies. Model sensitivity and specificity were pooled using the DerSimonian and Laird (random-effects) model. 
Subgroup analysis and meta-regression were performed.
RESULTS: Of 1021 citations identified, 17 studies were included in the systematic review and 11 studies, evaluating 165,787 eyes, 
were included in the meta-analysis. The area under the summary receiver operator curve (SROC) was 0.9905. The pooled sensitivity 
was 95.9% [95.5%-96.2%], and the overall pooled specificity was 96.5% [96.3%-96.6%]. The pooled diagnostic odds ratio (DOR) for 
detection of PM was 841.26 [418.37–1691.61].
CONCLUSIONS: This systematic review and meta-analysis provides robust early evidence that AI-based, particularly deep-learning 
based, diagnostic tools are a highly specific and sensitive modality for the detection of PM. There is potential for such tools to be 
incorporated into ophthalmic public health screening programmes, particularly in resource-poor areas with a substantial 
prevalence of high myopia.

Eye (2024) 38:303–314; https://doi.org/10.1038/s41433-023-02680-z

INTRODUCTION
Myopia is one of the most common ocular conditions worldwide, 
with global prevalence predicted to increase from nearly 2.8 
billion in the year 2020 to almost 5 billion—~49.8% of the world’s 
population—by the year 2050 [1]. High myopia, generally defined 
as a refractive error of −6 dioptres (D) or greater, can predispose 
individuals to sight-threatening sequelae such as glaucoma, 
cataract, retinal tears or detachment.

Pathological myopia (PM)—which occurs as a result of 
structural changes in the posterior segment of the eye due to 
significant axial elongation [2], is one of the major causes of 
irreversible visual impairment worldwide [2–5], affecting ~3% of 
the world population and as many as 50–70% of high myopics 
to some degree [6]. Reduced visual acuity due to PM can result 
in a considerable negative impact on quality of life, including 
social and emotional health and functional ability [7]. The 
potential economic impact of PM is also profound; a 2015 meta- 
analysis estimated the global productivity loss caused by 
myopic macular degeneration to be around US $6 billion 
worldwide [8].

The prevalence of myopia—the main risk factor for PM 
development—is extreme in many areas; in one study of 23,616 
males in South Korea, 96.5% were myopic [9]. Evidence suggests 
that treatment failure in the correction of myopia is common and 
that long-term efficacy (of importance in reducing the risk of PM) 
is often limited [10]. As a result, a significant number of 
individuals, particularly in highly myopic populations, are still 
likely to develop PM, underscoring the need for cost-effective, 
reliable and scalable screening programmes to identify and 
monitor patients with PM and follow-up those at high risk of 
developing sight-threatening complications.

The diagnosis of PM is made qualitatively on fundal examina-
tion. Qualitative diagnosis can be subject to inter-observer 
variability between practitioners, and requires considerable 
clinical expertise to perform accurately. While optical coherence 
tomography (OCT) may also be used in the diagnosis of PM, 
retinal fundus photography remains the most widely accessible 
form of ophthalmic imaging for screening purposes. Hence, at 
present, retinal fundus images are likely to be the most useful 
modality to test the efficacy of new diagnostic aids and tools.
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Several ‘classical’ features of PM may be visualised on fundus 
imaging, including a ‘tesselated’ atrophy of the retinal pigment 
epithelium, peripapillary atrophy, temporal flattening of the optic 
disc, lacquer cracks, posterior staphyloma and Fuch’s spot. A 
common cause of blindness in PM is myopic choroidal 
neovascularisation (CNV), which carries an extremely poor 
prognosis if untreated [2, 11].

Artificial intelligence (AI)-based diagnostic tools seek to reduce 
the need for expert interpretation by learning the features of 
normal and abnormal examples, with the aim of being able to 
label images autonomously. AI-aided diagnosis is no longer a 
novel concept in ophthalmology, and has been the subject of 
much evaluation for the screening of multiple ocular diseases, 
such as age-related macular degeneration, glaucoma, diabetic 
retinopathy, papilloedema and retinopathy of prematurity 
[12–16]. However, no systematic review or meta-analysis to date 
has sought to collate and evaluate the efficacy of these methods 
for the diagnosis of PM.

Therefore, the aim of the present systematic review and meta- 
analysis is to assess the diagnostic accuracy of artificial 
intelligence-based methods for the detection of PM using colour 
fundus images.

METHODS
Study registration
This study was registered on PROSPERO with registration number 
CRD42022309830.

Search strategy and inclusion/exclusion criteria
According to the Preferred Reporting Items for Systematic Review and 
Meta-Analyses (PRISMA), and using a search strategy designed by JP 
(Supplementary Table 1), the MEDLINE, EMBASE, CINAHL, Web of Science 
and IEEEExplore databases were searched. Reference lists of included 
studies were subsequently hand searched to identify additional studies 
that met the predefined inclusion criteria.

Studies were included if they reported the effectiveness of machine 
learning- or artificial intelligence-based detection algorithms in detecting 
PM; used indices such as area under the receiver-operator curve (AUROC), 
sensitivity and specificity to report on algorithm performance; evaluated 
colour fundus images; provided information about the size of the dataset 
and the reference standard; included a validation set at least 10% of the 
size of the training set; were in English and were published in a peer- 
reviewed journal. Reviews and conference abstracts were not included.

Study selection
Both reviewers independently screened all citations (and subsequently 
the full texts of included citations) for inclusion in a blinded process. 
Disagreements were resolved via mutual discussion, and details of these 
disagreements, along with final decisions on inclusion, are included in 
Supplementary Table 7.

Data extraction and quality assessment
A single reviewer (NT) extracted data from the included studies (Table 1, 2). 
Extracted data were directly checked against study data by a second 
reviewer (JP). Attempts were made to contact study authors for any 
missing information. Risk of bias assessment was performed using a novel, 
multi-step approach combining the Quality Assessment of Diagnostic 
Accuracy Studies 2 (QUADAS-2 [17]) checklist and the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM [18]). Each reviewer 
performed quality assessment independently using both checklists. Areas 
of conflict were highlighted and are included in Supplementary Table 7.

Data analysis
2 × 2 contingency tables and statistics were generated using the best 
available data from study manuscripts (Table 1). Using the 2 × 2 
contingency tables extracted for each study, sensitivity, specificity, 
positive predictive value, negative predictive value, negative likelihood 
ratio and positive likelihood ratio were calculated. Ungradable images 
were excluded from all analyses.

Where studies reported testing on both a primary, held-out test set and 
one or more external validation sets, the 2 × 2 contingency tables for each 
were combined to obtain a single contingency table. The combined 
contingency table was used in the meta-analysis. The contingency tables 
and model performance for the individual sets were recorded.

The presence of heterogeneity between included studies was assessed 
using the chi-square test and quantified by Higgins’ I2 [19], where significant 
heterogeneity was considered to be I2 ≥ 50%. The presence of threshold 
effects was assessed using the Spearman correlation coefficient between the 
logit of the true positive rate (TPR) and the false positive rate (FPR).

Where the heterogeneity among the included studies exceeded the 
stated threshold of 50%, measures were pooled using the DerSimonian 
and Laird (random-effects) model [20]. Where heterogeneity among the 
studies did not include the threshold, we planned to use a 
Mantel–Haenszel (fixed-effects) model [21].

Heterogeneity was investigated using subgroup analyses and meta- 
regression. Subgroup analyses were pre-specified in the study protocol, 
and included the type of model used and country of study/dataset origin. 
Sensitivity analyses were performed to assess the relationship between 
reviewer-assessed study quality and diagnostic accuracy and hetero-
geneity, in line with methods described by Higgins et al. [19]. Meta- 
regression was performed to analyse the relative effect of the size of the 
training set in each study.

The SROC curve was used to visually describe the relationship between 
the TPR and FPR in the included studies. The area under the SROC curve 
(AUROC) was calculated to demonstrate the probability of a classifier 
correctly classifying a randomly selected negative and positive example. 
Fagan nomograms were generated to describe the pre-test (prior) and 
post-test (posterior) probability for included studies, enabling direct 
translation of our results to the clinical setting.

Statistical analyses were performed using the Meta-Disc v1.4 software [22] 
and Review Manager 5.4 (The Cochrane Collaboration, 2020). Publication bias 
was assessed using the test described by Deeks et al. [23], implemented in R 
v4.1.3 using the meta package [24]. Fagan nomograms were generated in R 
v4.1.3 using the TeachingDemos package.

RESULTS
Study selection
Databases were initially searched for studies from inception to 20/ 
01/22; searches were re-run on 05/05/22 to identify newly 
published studies. 1021 citations were identified via the database 
search. After duplicate removal, 394 citations underwent abstract 
screening for eligibility. Thirty full text articles were screened, and 
met the inclusion criteria (Fig. 1). Five studies resulted in reviewer 
disagreements at the abstract screening stage, and are reported 
in Supplementary Table 7. There were no disagreements between 
reviewers at the full-text screening stage. Eleven studies were 
included in the meta-analysis [25–35], and a further six [35–40] in 
the systematic review.

Study quality assessment and publication bias
The results of the quality assessment are reported in Fig. 2, and 
Supplementary Tables 2 and 3. The quality of included studies 
was fair, with all studies achieving either moderate or high 
quality. There were no disagreements between reviewers on the 
quality of included studies. No articles were excluded on the basis 
of poor quality.

Using the quantitative funnel plot test described by Deeks et al. 
[23], it was determined that publication bias was unlikely for 
studies included in the meta-analysis (t = −1.53, p = 0.1607). The 
qualitative funnel plot is shown in Supplementary Fig. 1.

Study characteristics
All 17 included studies described and evaluated an AI-based method 
to identify pathological myopia from colour fundus images. Four-
teen studies (82.4%) used convolutional neural network-based 
methods, with one of these studies also using a support vector 
machine (SVM) method and another using a k-nearest neighbours 
method for classification. Two studies (11.8%) [32, 38] used SVM for 
classification, and another [40] used joint sparse multi-task learning. 
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Six studies (35.3%) used publicly available datasets, and two studies 
(11.8%) used some publicly available data. Demographic informa-
tion, where reported, is presented in Supplementary Table 8. Eight 
studies (47.1%) used the META-PM definition for pathological 
myopia to guide annotation; the remainder did not use a formal 
definition. Eight studies (47.1%) included an external validation set. 
Seven studies (41.2%) compared the performance of the algorithm 
with that of one or more human graders, reported in Supplementary 
Table 10.

Fourteen studies (82.4%) used direct labelling by expert 
ophthalmologists or retinal specialists only as the reference standard. 
One study (5.9%) also used labelling by expert ophthalmologists and 

non-medical expert graders. One study (5.9%) used self-labelling 
methods for the training data and health record data for the test set. 
Two studies (11.8%) used health record data to generate labels.

Performance of AI in detection of pathological myopia
Eleven studies were included in the meta-analysis. The area under 
the SROC curve was 0.9905. The range of sensitivities reported 
was 0.850–1.000. The range of specificities reported was 
0.900–1.000. All except three studies (27.3%) had a sensitivity 
and specificity above 0.900 [25, 30, 32]. The pooled sensitivity was 
0.959 (95% CI 0.955–0.962, I2 97.1%). The pooled specificity 
was 0.965 (95% CI 0.963–0.966, I2 99.4%) (Fig. 3). Diagnostic odds 

Fig. 1 PRISMA flowchart showing study design. Added numbers (denoted with '+') represent studies added in the second database search.
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ratios for included studies ranged from 51.00–22702.90 (Supple-
mentary Table 6). The pooled diagnostic odds ratio (DOR) for 
detection of PM was 841.26 [95% CI 418.37–1691.61]. Fagan 
nomograms are used (Supplementary Fig. 4) to demonstrate the 
post-test probabilities of the included models, which ranged from 
54.73% to 99.15%.

Individual contingency tables for included studies are reported 
in Supplementary Table 5.

Performance comparison with human graders
7 of 11 studies included in the meta-analysis (63.6%) also reported 
a comparison with human graders, and are reported in 
Supplementary Table 10. Where reported, the mean sensitivities 
and specificities of the human graders ranged from 0.719–0.986 
and 0.972–0.998, respectively. The corresponding proposed 
model sensitivities and specificities ranged from 0.908–0.991 
and 0.925–1.000, respectively.

Heterogeneity analysis
Heterogeneity across the included studies was substantial (Fig. 3). 
We sought to explain this heterogeneity using threshold analysis, 
meta-regression and subgroup analysis.

Threshold analysis
A threshold analysis showed no significant effect (Spearman 
correlation coefficient = −0.112, p = 0.729), indicating that the 
heterogeneity observed between the included studies was 
unlikely to be due to a threshold effect.

Subgroup and sensitivity analyses
We performed subgroup analyses as pre-specified in the study 
protocol. Subgroup analysis by publication year was deemed 
inappropriate due to the recent publication date of all except 
one study.

A subgroup analysis by classification algorithm was performed. 
Two studies [25, 31] used an SVM-based model for classification and 
were considered as a separate subgroup to studies using CNNs. 
Fifteen studies used a CNN-based approach. Although the two non- 
CNN studies had a significantly lower pooled sensitivity (0.878 [95% 
CI 0.832–0.915], I2 = 0.0%) than the CNN studies (0.960 [95% CI 
0.957–0.964], I2 = 97.4%), the pooled specificity was higher (0.999 
[95% CI 0.998–1.000], I2 = 94.3%) than that of the CNN studies (0.961 
[95% CI 0.959–0.962], I2 = 99.3%). The AUROC for the CNN studies 
was 0.9925; as there were only two non-CNN studies, AUROC was 
not estimable for this subgroup. Subgroup analysis by study country 

Fig. 2 Results of QUADAS-2 quality assessment. Green = high quality; yellow = unclear; red = low quality.
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(studies originating from China vs. other regions) and showed lower 
sensitivities, specificities and AUROC for studies originating outside 
China (Supplementary Figs. 2 and 3). Heterogeneity generally 
remained high (I2 > 90%) in subgroups, limiting interpretation.

Sensitivity analyses based on reviewer-assessed study quality 
using QUADAS-2 (Fig. 2) showed a significantly lower AUROC 
(0.859), sensitivity (0.888 [95% CI 0.867–0.907], I2 = 16.8%) and 
specificity (0.959 [95% CI 0.944–0.971], I2 = 56.1%) for studies with 
a ‘moderate’ risk of bias than sensitivity and specificity for studies 
with a ‘low’ risk of bias (0.993, 0.966 [95% CI 0.962–0.969], 
I2 = 97.1%, 0.965 [95% CI 0.966–0.963], I2 = 99.6%).

Similarly, sensitivity was higher in studies with an external 
validation group (0.960 [95% CI 0.956–0.964], I2 = 98.1%) versus 
without (0.908 [95% CI 0.875–0.935], I2 = 72.5%) (Table 2). 
However, specificity was higher in studies without an external 
validation group (0.999 [95% CI 0.998–1.000], I2 = 85.6%, vs 0.961 
[95% CI 0.959–0.962], I2 = 99.5%)

Meta-regression
Univariate meta-regression (Table 2) showed no statistically 
significant effect of training set size to account for the observed 
heterogeneity.

DISCUSSION
To our knowledge, this is the first systematic review and meta- 
analysis to show that AI-based screening methods are highly 
sensitive and specific for the diagnosis of pathological myopia 
from fundus images. The area under the SROC curve was 0.9905, 
suggesting excellent classification performance of included 
models, as well as high diagnostic odds ratios (pooled DOR =  
841.26) suggesting that included models generally possessed 
robust discriminative ability. However, the presence of unex-
plained statistical heterogeneity means that results should be 
interpreted with caution.

The majority of included studies used CNN-based models to 
detect PM. Three of the studies reported lower sensitivities 
[25, 30, 31], two of which used SVM to classify images, which 
would be expected to have lower discriminative ability than a 
deep learning-based approach. While one study employing SVM 
[37] was excluded from the quantitative analysis, it also showed a 
lower discriminative ability relative to CNN-based models.

Fagan nomograms were used to describe the likelihood of a 
patient having PM if the diagnostic tool deemed them to be a 
positive case (post-test probability); these demonstrated generally 
high (>85%) post-test probabilities, suggesting that diagnostic 

Fig. 3 Forest plot and SROC curves for main analysis. Forest plot of sensitivities (a) and specificities (b) and SROC curve for overall diagnostic 
performance (c) for all studies included in meta-analysis. CI indicates confidence interval; SROC, Summary receiver operating characteristic, AUC 
indicates area under the curve, SE indicates standard error; Q* indicates where sensitivity = specificity (intersection of diagonal with SROC curve).
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decisions made by AI-based tools may offer clinicians a high 
degree of clinical certainty.

The potential application of AI models to diagnose PM in 
practice is multi-fold. Firstly, these analyses show a universally 
high observed diagnostic accuracy of AI-based models, reinfor-
cing their capability as powerful screening tools for PM.

Secondly, our analyses reveal that the diagnostic accuracy and 
discriminative capability of these models is comparable to that 
provided by ophthalmologists, highlighting their capability as 
decision aids. In all seven studies comparing algorithm and grader 
performance, algorithm sensitivity and specificity was comparable 
with that of human graders, offering support for the use of such 
algorithms as screening or triage tools. The use of AI in an 
assistive capacity may reduce uncertainty in diagnosis and reduce 
the variability in the diagnosis made between healthcare 
professionals [41].

Tools based on AI models can work with clinicians to guide 
triage and referral decisions in general practice or non-specialist 
centres with a high case burden, as described by De Fauw et al. 
[42]. This may have particular benefit for clinicians in training, or 
in regions with reduced incidence of PM, who may derive benefit 
from decision support in selecting cases of PM [43], or in areas 
with poor access to healthcare services [44].

Identification and close follow-up of patients with uncompli-
cated PM is crucial in enabling early management of treatable 
complications such as myopic CNV—for example with anti-VEGF 
therapy [45]—optimisation of visual acuity and stabilisation of 
progressive myopia. As novel treatments, such as stem cell 
therapy, gain prominence in the management of retinal disease 
[46], timely and targeted intervention is likely to be effective in 
reducing the public health burden of PM. Identification of PM can 
enable prognostication and careful multidisciplinary planning to 
mitigate the social, economic [47] and cognitive [48] impacts of 
progressive visual loss on the individual.

No included studies reported on the implementation of AI- 
based screening methods in clinical practice. While this review 
highlights the potential of AI to make highly specific and sensitive 
judgements on the presence or absence of pathological myopia, 
consideration must be given to generalisability across popula-
tions, explainability of screening decisions [49], and patient and 
healthcare professional acceptability [50].

Several existing reviews and meta-analyses examine the sensi-
tivity and specificity of AI-based methods for the detection of other 
ophthalmic conditions from fundus photographs. Dong et al. [12] 
performed a systematic review and meta-analysis of AI algorithms 
used for the diagnosis of age-related macular degeneration, finding 
a pooled sensitivity and specificity of 0.88 and 0.90 respectively. 
Chaurasia et al. [13] demonstrated a pooled sensitivity and 
specificity of 0.92 and 0.94 respectively for the diagnosis of 
glaucoma from fundus images using AI algorithms. Finally, a meta- 
analysis by Wu et al. [51] observed a combined AUROC of 0.97–0.99 
for the use of AI in diabetic retinopathy screening.

Examples are present in the literature of the use of AI for the 
detection of PM from optical coherence tomography (OCT) 
images [32, 52]. However, this was beyond the scope of this 
study. At the time of writing, OCT machines remain expensive, 
rendering them inaccessible in many regions. Fundus imaging, 
however, is widespread, and screening tools based on fundus 
photography may have a more significant clinical impact in less 
economically developed regions.

Future research assessing the diagnostic performance of AI 
models using OCT images for detection of PM may be useful in 
regions where the technology is widely used.

Strengths and weaknesses
The present study has several strengths. We used robust meta- 
analytic methodology to assess the pooled diagnostic accuracy of 

included studies, according to the PRISMA guidelines. Rigorous 
risk of bias assessment was performed, using two checklists, to 
identify studies which did not meet quality standards for 
inclusion, and heterogeneity and publication bias were compre-
hensively assessed using established methods.

Several limitations to this analysis are noted. First, there was 
significant statistical heterogeneity between the included studies, 
which was not entirely explained by analysis of threshold effects, 
study origin, training set size, study quality, the presence of 
external validation or the algorithm used.

A sensitivity analysis showed that studies deemed to have a 
moderate risk of bias reported a lower sensitivity and specificity, 
and studies without an external validation set reported a lower 
sensitivity—explaining some of the observed heterogeneity. 
Notably, there was considerable variation in the case-mix of 
positive to negative cases between studies, with PM prevalence 
varying from 3.78% in the test set used by Demir et al. to over 
50% in other studies, potentially contributing to spectrum bias 
(where the discriminative ability of a diagnostic test varies 
according to the population in which it is used).

Meta-analyses of diagnostic accuracy of AI-based tools for the 
diagnosis of other ophthalmic conditions also demonstrate high 
unexplained heterogeneity [53], suggesting that variation in 
study and model design may have contributed to heterogeneity. 
However, it was not possible to assess the effects of variation in 
study design in detail (beyond subgroup analysis based on model 
type) due to the limited amount of methodological data provided 
in some studies. Regardless, the included studies spanned a 
diverse range of techniques and approaches, which—in the 
context of universally high diagnostic accuracy—suggests that AI- 
based techniques may possess excellent external validity for this 
purpose.

Secondly, several studies did not include an external validation 
set, limiting the generalisation ability of the algorithms reported. 
Ophthalmic patient populations are diverse, underlining the need 
for external validation, and meaning that the results of these 
studies should be interpreted with caution.

Third, there is a small degree of overlap between images 
contained within public datasets used in the studies, which 
could result in inflated estimates of diagnostic accuracy when 
comparing studies. Fourth, a retrospective study design was 
employed by all included studies. Retrospective design can 
lead to a selection bias, and have been shown to lead to 
overestimation of diagnostic accuracy [54]. Fifth, there was a 
preponderance of studies from East Asian countries, particu-
larly China, in this review and meta-analysis. Planned 
subgroup analysis assessing studies by country of origin 
showed a small increase in sensitivity and specificity for 
studies originating from China, however it is unknown 
whether this is due to model factors or ethnic differences in 
fundus appearance [55].

Finally, due to the limitations of the available data, we did not 
include an analysis of model performance by severity of 
pathological myopia. It is therefore unknown how disease severity 
affects diagnostic accuracy in this case. Evidence suggests that 
use of severe cases may result in somewhat inflated estimates of 
diagnostic accuracy, and this would be an appropriate area for 
future research [54].

CONCLUSION
This systematic review and meta-analysis provide robust early 
evidence for the diagnostic accuracy of AI-based tools in the 
diagnosis of PM. Such tools are likely to have significant impact in 
screening, triage, assisted diagnosis and monitoring of myopic 
patients, and may enable earlier diagnosis and improve clinical 
outcomes for patients at risk of developing PM.
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SUMMARY

What was known before

– Pathological myopia (PM) is an increasingly prevalent sight- 
threatening complication of high myopia, which requires 
close follow-up once identified to mitigate visual loss.

– The identification of PM from fundus images generally relies 
upon qualitative diagnosis by a healthcare professional.

– Artificial intelligence-based diagnostic tools have shown 
promise in ophthalmic diagnosis, but have not been 
specifically validated for use in PM.

What this study adds

– Artificial intelligence-based algorithms are highly sensitive 
and specific for the diagnosis of PM from colour fundus 
images.

– These tools may hold potential for use in resource- 
constrained healthcare settings with a high prevalence of PM.
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