Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impact of visual function on staircase use performance in glaucoma

Abstract

Objectives

This cross-sectional study aimed to investigate the relationship between visual function and staircase use in glaucoma.

Methods

Overall, 181 patients with glaucoma with a best-corrected visual acuity ≥20/400 were classified into mild to moderate (mean deviation [MD] ≥ −12 dB) and advanced (MD < −12 dB) groups, according to 24–2 VF of the worse eye. Staircase use evaluation included stair descent and ascent time (SDT/SAT) and self-reported stair difficulty. Correlations between staircase use and visual function were analysed, including binocular visual acuity, integrated visual field (IVF), and binocular contrast sensitivity (CS). Linear and logistic regression adjusted by age, sex, and comorbidities inspected the effect of visual parameters on SDT/ SAT and stair difficulty.

Results

Visual function best correlated with SDT among staircase use. In mild to moderate glaucoma, area under the log CS function (AULCSF) (β = −1.648, P = 0.031) was the only visual factor significant for SDT (adjusted R2 = 0.106), whereas AULCSF (β = −1.641, P = 0.048) and MD of IVFINF0–24 (β = −0.089, P = 0.013) were associated with SDT in advanced glaucoma (adjusted R2 = 0.589). The AULCSF was the only significant visual parameter related to SAT (β = −1.125, P = 0.019) and stair difficulty (adjusted odds ratio = 0.003; 95% confidence interval, 0–0.302; P = 0.013).

Conclusions

SDT provides a higher correlation with visual function than self-reported stair difficulty. Patients with impaired CS or inferior IVF defects should be advised on stair safety and referred to low-vision services.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Wolffsohn JS, Cochrane AL. Low vision perspectives on glaucoma. Clin Exp Optom. 1998;81:280–9.

    Article  PubMed  Google Scholar 

  2. Janz NK, Wren PA, Lichter PR, Musch DC, Gillespie BW, Guire KE. Quality of life in newly diagnosed glaucoma patients: the collaborative initial glaucoma treatment study. Ophthalmology. 2001;108:887–97.

    Article  CAS  PubMed  Google Scholar 

  3. Coleman AL, Stone K, Ewing SK, Nevitt M, Cummings S, Cauley JA, et al. Higher risk of multiple falls among elderly women who lose visual acuity. Ophthalmology. 2004;111:857–62.

    Article  PubMed  Google Scholar 

  4. Lord SR, Clark RD, Webster IW. Visual acuity and contrast sensitivity in relation to falls in an elderly population. Age Ageing. 1991;20:175–81.

    Article  CAS  PubMed  Google Scholar 

  5. Freeman EE, Muñoz B, Rubin G, West SK. Visual field loss increases the risk of falls in older adults: the Salisbury eye evaluation. Invest Ophthalmol Vis Sci. 2007;48:4445–50.

    Article  PubMed  Google Scholar 

  6. Lord SR, Dayhew J, Howland A. Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people. J Am Geriatr Soc. 2002;50:1760–6.

    Article  PubMed  Google Scholar 

  7. Lord SR, Dayhew J. Visual risk factors for falls in older people. J Am Geriatr Soc. 2001;49:508–15.

    Article  CAS  PubMed  Google Scholar 

  8. Ramulu PY, van Landingham SW, Massof RW, Chan ES, Ferrucci L, Friedman DS. Fear of falling and visual field loss from glaucoma. Ophthalmology. 2012;119:1352–8.

    Article  PubMed  Google Scholar 

  9. Stein JD. Disparities between ophthalmologists and their patients in estimating quality of life. Curr Opin Ophthalmol. 2004;15:238–43.

    Article  PubMed  Google Scholar 

  10. Lam AKN, To E, Weinreb RN, Yu M, Mak H, Lai G, et al. Use of virtual reality simulation to identify vision-related disability in patients with glaucoma. JAMA Ophthalmol. 2020;138:490–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Friedman DS, Freeman E, Munoz B, Jampel HD, West SK. Glaucoma and mobility performance: the Salisbury eye evaluation project. Ophthalmology. 2007;114:2232–7.

    Article  PubMed  Google Scholar 

  12. Nightingale EJ, Pourkazemi F, Hiller CE. Systematic review of timed stair tests. J Rehabil Res Dev. 2014;51:335–50.

    Article  PubMed  Google Scholar 

  13. Bennell K, Dobson F, Hinman R. Measures of physical performance assessments: self-paced walk test (SPWT), stair climb test (SCT), six-minute walk test (6MWT), chair stand test (CST), timed up and go (TUG), sock test, lift and carry test (LCT), and car task. Arthritis Care Res (Hoboken). 2011;63:S350–S370.

    Article  PubMed  Google Scholar 

  14. Kloos AD, Kegelmeyer DA, Ambrogi K, Kline D, McCormack-Mager M, Schroeder B, et al. The Step Test Evaluation of Performance on Stairs (STEPS): validation and reliability in a neurological disorder. PLOS One. 2019;14:e0213698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zebardast N, Swenor BK, van Landingham SW, Massof RW, Munoz B, West SK, et al. Comparing the impact of refractive and non-refractive vision loss on functioning and disability: the Salisbury eye evaluation. Ophthalmology. 2015;122:1102–10.

    Article  PubMed  Google Scholar 

  16. Shakarchi AF, Mihailovic A, West SK, Friedman DS, Ramulu PY. Vision parameters most important to functionality in glaucoma. Invest Ophthalmol Vis Sci. 2019;60:4556–63.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hodapp E, Parrish RK & Anderson DR. Clinical decisions in glaucoma (The CV Mosby Co., St Louis, 1993).

  18. Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG, Siegartel LR, et al. Categorising the stage of glaucoma from pre-diagnosis to end-stage disease. Am J Ophthalmol. 2006;141:24–30.

    Article  PubMed  Google Scholar 

  19. Nelson P, Aspinall P, Papasouliotis O, Worton B, O’Brien C. Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003;12:139–50.

    Article  PubMed  Google Scholar 

  20. Alió JL, Yébana P, Cantó M, Plaza AB, Vega A, Alió Del Barrio JL. Clinical outcomes with a new design in multifocal intraocular lens: a pilot study. Eye Vis (Lond). 2020;7:38.

    Article  PubMed  Google Scholar 

  21. Applegate RA, Howland HC, Sharp RP, Cottingham AJ, Yee RW. Corneal aberrations and visual performance after radial keratotomy. J Refract Surg. 1998;14:397–407.

    Article  CAS  PubMed  Google Scholar 

  22. Nelson-Quigg JM, Cello K, Johnson CA. Predicting binocular visual field sensitivity from monocular visual field results. Invest Ophthalmol Vis Sci. 2000;41:2212–21.

    CAS  PubMed  Google Scholar 

  23. Rubin GS, Muñoz B, Bandeen-Roche K, West SK. Monocular versus binocular visual acuity as measures of vision impairment and predictors of visual disability. Invest Ophthalmol Vis Sci. 2000;41:3327–34.

    CAS  PubMed  Google Scholar 

  24. Jones L, Garway-Heath DF, Azuara-Blanco A, Crabb DP, United Kingdom Glaucoma Treatment Study Investigators. Are patient self-reported outcome measures sensitive enough to be used as end points in clinical trials?: evidence from the United Kingdom Glaucoma Treatment Study. Ophthalmology. 2019;126:682–9.

    Article  PubMed  Google Scholar 

  25. Shiomi T. Effects of different patterns of stairclimbing on physiological cost and motor efficiency. J Hum Ergol (Tokyo). 1994;23:111–20.

    CAS  PubMed  Google Scholar 

  26. Kaleem MA, West SK, Im L, Swenor BK. Referral to low vision services for glaucoma patients: referral criteria and barriers. J Glaucoma. 2018;27:653–5.

    Article  PubMed  Google Scholar 

  27. Crabb DP. A view on glaucoma—are we seeing it clearly? Eye. 2016;30:304–13.

    Article  CAS  PubMed  Google Scholar 

  28. Fenwick EK, Man RE, Aung T, Ramulu P, Lamoureux EL. Beyond intraocular pressure: optimising patient-reported outcomes in glaucoma. Prog Retin Eye Res. 2020;76:100801.

    Article  PubMed  Google Scholar 

  29. Bierings RAJM, de Boer MH, Jansonius NM. Visual performance as a function of luminance in glaucoma: the de Vries-Rose, Weber’s, and Ferry-Porter’s law. Invest Ophthalmol Vis Sci. 2018;59:3416–23.

    Article  PubMed  Google Scholar 

  30. Ichhpujani P, Thakur S, Spaeth GL. Contrast sensitivity and glaucoma. J Glaucoma. 2020;29:71–75.

    Article  PubMed  Google Scholar 

  31. Marron JA, Bailey IL. Visual factors and orientation-mobility performance. Am J Optom Physiol Opt. 1982;59:413–26.

    Article  CAS  PubMed  Google Scholar 

  32. Lennerstrand G, Ahlström CO. Contrast sensitivity in macular degeneration and the relation to subjective visual impairment. Acta Ophthalmol (Copenh). 1989;67:225–33.

    Article  CAS  PubMed  Google Scholar 

  33. Wandell BA. Foundations of Vision. Sunderland, Massachusetts: Sinauer Associates, Inc.; 1995.

  34. McKendrick AM, Sampson GP, Walland MJ, Badcock DR. Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocellular pathways. Invest Ophthalmol Vis Sci. 2007;48:2115–22.

    Article  PubMed  Google Scholar 

  35. Arden GB, Jacobson JJ. A simple grating test for contrast sensitivity: preliminary results indicate value in screening for glaucoma. Invest Ophthalmol Vis Sci. 1978;17:23–32.

    CAS  PubMed  Google Scholar 

  36. Korth M, Horn F, Storck B, Jonas JB. Spatial and spatiotemporal contrast sensitivity of normal and glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 1989;227:428–35.

    Article  CAS  PubMed  Google Scholar 

  37. Fatehi N, Nowroozizadeh S, Henry S, Coleman AL, Caprioli J, Nouri-Mahdavi K. Association of structural and functional measures with contrast sensitivity in glaucoma. Am J Ophthalmol. 2017;178:129–39.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schiefer U, Papageorgiou E, Sample PA, Pascual JP, Selig B, Krapp E, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51:5685–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marigold DS, Patla AE. Visual information from the lower visual field is important for walking across multi-surface terrain. Exp Brain Res. 2008;188:23–31.

    Article  PubMed  Google Scholar 

  40. Turano KA, Broman AT, Bandeen-Roche K, Munoz B, Rubin GS, West S, et al. Association of visual field loss and mobility performance in older adults: Salisbury eye evaluation study. Optom Vis Sci. 2004;81:298–307.

    Article  PubMed  Google Scholar 

  41. Black AA, Wood JM, Lovie-Kitchin JE. Inferior field loss increases rate of falls in older adults with glaucoma. Optom Vis Sci. 2011;88:1275–82.

    Article  PubMed  Google Scholar 

  42. Baig S, Diniz-Filho A, Wu Z, Abe RY, Gracitelli CP, Cabezas E, et al. Association of fast visual field loss with risk of falling in patients with glaucoma. JAMA Ophthalmol. 2016;134:880–6.

    Article  PubMed  Google Scholar 

  43. Milaneschi Y, Penninx BW. Depression in older persons with mobility limitations. Curr Pharm Des. 2014;20:3114–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bohannon RW. Body mass index and mobility of older home care patients. Physiother Theory Pract. 2011;27:460–2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express our gratitude to the staff of the National Taiwan University Hospital-Statistical Consulting Unit (NTUH-SCU) for statistical consultation.

Author information

Authors and Affiliations

Authors

Contributions

Design and implementation of the study (CCS., LTT); collection, management, analysis, and interpretation of the data (CCS, LTT, KML); preparation, review, and approval of the manuscript (CCS, THW, JYH, LTT).

Corresponding author

Correspondence to Li-Ting Tsai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CC., Wang, TH., Huang, JY. et al. The impact of visual function on staircase use performance in glaucoma. Eye 38, 357–363 (2024). https://doi.org/10.1038/s41433-023-02696-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02696-5

This article is cited by

Search

Quick links