Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV infection alters the human epigenetic landscape

Abstract

Many complex diseases or traits are the results of both genetic and environmental factors. The environmental factors affect the human body by modifying its epigenetics, which controls the activity of genomes without mutating it. Viral infection is one of the common environmental factors for complex diseases. For example, the human immunodeficiency virus (HIV) infection can cause acquired immune deficiency syndrome (AIDS), HBV, and HCV infections are associated with hepatocellular carcinoma, and human papillomavirus infection is a causal factor in cervical carcinoma. In this study, to investigate how HIV infection affects DNA methylation, we analyzed the blood DNA methylation data of 485 512 sites in 44 HIV- and 142 HIV + patients. Several advanced computational methods were applied to identify the core distinctive features that were different between the HIV patients and the healthy controls. These methods can be used for differentiating HIV-infected patients from uninfected ones. These core distinctive DNA methylation features were confirmed to be functionally connected to premature aging and abnormal immune regulation, two typical pathological symptoms of HIV infection, revealing the potential regulatory mechanisms of HIV infection on the DNA methylation status of the host cells and provided novel insights on the pathogenesis of HIV infection and AIDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Turner AW, Margolis DM. Chromatin regulation and the histone code in HIV latency. Yale J Biol Med. 2017;90:229–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boritz EA, Douek DC. Perspectives on human immunodeficiency virus (HIV) cure: HIV persistence in tissue. J Infect Dis. 2017;215(suppl_3):S128–S133.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who’s interfering with whom? Nat Rev Microbiol. 2015;13:403–13.

    CAS  Google Scholar 

  4. Ford N, Ball A, Baggaley R, Vitoria M, Low-Beer D, Penazzato M et al. The WHO public health approach to HIV treatment and care: looking back and looking ahead. Lancet Infect Dis. 2017;18:e76–86.

    PubMed  Google Scholar 

  5. Mudd JC, Lederman MM. CD8 T cell persistence in treated HIV infection. Curr Opin HIV AIDS. 2014;9:500–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lissina A, Chakrabarti LA, Takiguchi M, Appay V. TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol. 2016;16:77–85.

    CAS  PubMed  Google Scholar 

  7. Munier CM, Kelleher AD, Kent SJ, De Rose R. The role of T cell immunity in HIV-1 infection. Curr Opin Virol. 2013;3:438–46.

    CAS  PubMed  Google Scholar 

  8. Weber J. The pathogenesis of HIV-1 infection. Br Med Bull. 2001;58:61–72.

    CAS  PubMed  Google Scholar 

  9. Oxenius A, Price DA, Easterbrook PJ, O’Callaghan CA, Kelleher AD, Whelan JA, et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+and CD4+T lymphocytes. Proc Natl Acad Sci USA. 2000;97:3382–7.

    CAS  PubMed  Google Scholar 

  10. Siliciano RF. Latency and reservoirs for HIV-1. AIDS. 1999;13(Suppl A):S49–58.

    CAS  PubMed  Google Scholar 

  11. Prather KL, Edmonds MC, Herod JW. Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl Microbiol Biotechnol. 2006;73:815–26.

    PubMed  Google Scholar 

  12. Rice P, Mizuuchi K. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell. 1995;82:209–20.

    CAS  PubMed  Google Scholar 

  13. Warrilow D, Harrich D. HIV-1 replication from after cell entry to the nuclear periphery. Curr HIV Res. 2007;5:293–9.

    CAS  PubMed  Google Scholar 

  14. Zhang Y, Li SK, Yi Yang K, Liu M, Lee N, Tang X, et al. Whole genome methylation array reveals the down-regulation of IGFBP6 and SATB2 by HIV-1. Sci Rep. 2015;5:10806.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouellet DL, Vigneault-Edwards J, Letourneau K, Gobeil LA, Plante I, Burnett JC, et al. Regulation of host gene expression by HIV-1 TAR microRNAs. Retrovirology. 2013;10:86.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Capello D, Scandurra M, Poretti G, Rancoita PM, Mian M, Gloghini A, et al. Genome wide DNA-profiling of HIV-related B-cell lymphomas. Br J Haematol. 2010;148:245–55.

    CAS  PubMed  Google Scholar 

  17. Dev RR, Ganji R, Singh SP, Mahalingam S, Banerjee S, Khosla S. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem J. 2017;474:2009–26.

    CAS  PubMed  Google Scholar 

  18. Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, et al. Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell. 2016;62:157–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goel N, Karir P, Garg VK. Role of DNA methylation in human age prediction. Mech Ageing Dev. 2017;166:33–41.

    CAS  PubMed  Google Scholar 

  20. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sokoya T, Steel HC, Nieuwoudt M, Rossouw TM. HIV as a Cause of Immune Activation and Immunosenescence. Mediat Inflamm. 2017;2017:6825493.

    CAS  Google Scholar 

  22. Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J. Monte Carlo feature selection for supervised classification. Bioinformatics. 2008;24:110–7.

    CAS  PubMed  Google Scholar 

  23. Liu HA, Setiono R. Incremental feature selection. Appl Intell. 1998;9:217–30.

    Google Scholar 

  24. Li W. Mutual information functions versus correlation functions. J Stat Phys. 1990;60:823–37.

    Google Scholar 

  25. Peng HC, Long FH, Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27:1226–38.

    PubMed  Google Scholar 

  26. Zou Q, Zeng J, Cao L, Ji R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing. 2016;173:346–54.

    Google Scholar 

  27. Kononenko I, Simec E, RobnikSikonja M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl Intell. 1997;7:39–55.

    Google Scholar 

  28. Wang D, Li J-R, Zhang Y-H, Chen L, Huang T, Cai Y-D. Identification of differentially expressed genes between original breast cancer and xenograft Using machine learning algorithms. Genes. 2018;9:155.

    PubMed Central  Google Scholar 

  29. Chen L, Li J, Zhang YH, Feng K, Wang S, Zhang Y, et al. Identification of gene expression signatures across different types of neural stem cells with the Monte-Carlo feature selection method. J Cell Biochem. 2018;119:3394–403.

    CAS  PubMed  Google Scholar 

  30. Wang S, Cai Y. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. Biochim Et Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(6, Part B):2218–27.

    CAS  Google Scholar 

  31. Zhang YH, Hu Y, Zhang Y, Hu LD, Kong X. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine. Biochim Et Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(6, Part B):2255–65.

    CAS  Google Scholar 

  32. Pan X, Hu X, Zhang Y-H, Feng K, Wang SP, Chen L. et al. Identifying patients with atrioventricular septal defect in down syndrome populations by using self-normalizing neural networks and feature selection. Genes. 2018;9:208

    PubMed Central  Google Scholar 

  33. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

    Google Scholar 

  34. Pan XY, Xiong K. PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol Biosyst. 2015;11:2219–26.

    CAS  PubMed  Google Scholar 

  35. Pan XY, Shen HB. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Pept Lett. 2009;16:1447–54.

    CAS  PubMed  Google Scholar 

  36. Mirza AH, Berthelsen CHB, Seemann SE, Pan XY, Frederiksen KS, Vilien M, et al. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 2015;7:39.

    PubMed  PubMed Central  Google Scholar 

  37. Chen L, Wang S, Zhang Y-H, Li J, Xing Z-H, Yang J, et al. Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access. 2017;5:26582–90.

    Google Scholar 

  38. Chen L, Chu C, Zhang YH, Zhu C, Kong X, Huang T, et al. Analysis of Gene Expression Profiles in the Human Brain Stem, Cerebellum and Cerebral Cortex. PLoS ONE. 2016;11:e0159395.

    PubMed  PubMed Central  Google Scholar 

  39. Wang S, Zhang Q, Lu J, Cai Y-D. Analysis and prediction of nitrated tyrosine sites with the mRMR method and support vector machine algorithm. Curr Bioinforma. 2018;13:3–13.

    CAS  Google Scholar 

  40. Chen L, Pan X, Hu X, Zhang Y-H, Wang S, Huang T, et al. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer. 2018;143:1731–40.

    CAS  Google Scholar 

  41. Witten IH, Frank E (eds). Data mining:Practical machine learning tools and techniques. San Francisco: Morgan, Kaufmann; 2005.

    Google Scholar 

  42. Platt J (ed). Fast training of support vector machines using sequential minimal optimization. Cambridge, MA: MIT Press; 1998.

    Google Scholar 

  43. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 2001;13:637–49.

    Google Scholar 

  44. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence. Montreal, Quebec, Canada. Lawrence Erlbaum Associates Ltd, (Mahwah, NJ, USA 1995).

  45. Fang Y, Chen L. A binary classifier for prediction of the types of metabolic pathway of chemicals. Comb Chem High Throughput Screen. 2017;20:140–6.

    CAS  PubMed  Google Scholar 

  46. Ni Q, Chen L. A feature and algorithm selection method for improving the prediction of protein structural classes. Comb Chem High Throughput Screen. 2017;20:612–21.

    CAS  PubMed  Google Scholar 

  47. Chen L, Zhang Y-H, Huang G, Pan X, Wang S, Huang T, et al. Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol Genet Genom. 2018;293:137–49.

    CAS  Google Scholar 

  48. Chen L, Zhang YH, Lu G, Huang T, Cai YD. Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artif Intell Med. 2017;76:27–36.

    PubMed  Google Scholar 

  49. Zhang YH, Huang T, Chen L, Xu Y, Hu Y, Hu LD, et al. Identifying and analyzing different cancer subtypes using RNA-seq data of blood platelets. Oncotarget. 2017;8:87494–511.

    PubMed  PubMed Central  Google Scholar 

  50. Cai Y-D, Zhang S, Zhang Y-H, Pan X, Feng K, Chen L, et al. Identification of the gene expression rules that define the subtypes in glioma. J Clin Med. 2018;7:350.

    PubMed Central  Google Scholar 

  51. Chen L, Feng KY, Cai YD, Chou KC, Li HP. Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition. BMC Bioinforma. 2010;11:293.

    Google Scholar 

  52. Chen L, Chu C, Zhang Y-H, Zheng M-Y, Zhu L, Kong X, et al. Identification of drug-drug interactions using chemical interactions. Curr Bioinforma. 2017;12:526–34.

    CAS  Google Scholar 

  53. Li J, Lu L, Zhang Y, Liu M, Chen L, Huang T et al. Identification of synthetic lethality based on a functional network by using machine learning algorithms. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27395

    CAS  PubMed  Google Scholar 

  54. Zhao X, Chen L, Lu J. A similarity-based method for prediction of drug side effects with heterogeneous information. MathBiosci. 2018. https://doi.org/10.1016/j.mbs.2018.09.010

    CAS  PubMed  Google Scholar 

  55. Matthews B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Et Biophys Acta (BBA)-Protein Struct. 1975;405:442–51.

    CAS  Google Scholar 

  56. Johnson DS. Approximation algorithms for combinatorial problems. J Comput Syst Sci. 1974;9:256–78.

    Google Scholar 

  57. Cohen WW. Fast effective rule induction. In: Twelfth International Conference on Machine Learning, Tahoe City, CA, USA 1995. pp. 115–23.

  58. Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA, et al. Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol. 2005;79:124–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, et al. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001;104:731–41.

    CAS  PubMed  Google Scholar 

  60. Chelbi ST, Dang AT, Guarda G. Emerging major histocompatibility complex class I-related functions of NLRC5. Adv Immunol. 2017;133:89–119.

    CAS  PubMed  Google Scholar 

  61. Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G et al. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics. 2016;11:750–60.

    PubMed  PubMed Central  Google Scholar 

  62. Boehm D, Ott M. Host methyltransferases and demethylases: potential new epigenetic targets for HIV cure strategies and beyond. AIDS Res Hum Retrovir. 2017;33(S1):S8–S22.

    PubMed  Google Scholar 

  63. Li F, Li L, Zhong Y, Xie Q, Huang J, Kang X, et al. Relationship between LTR methylation and gag expression of HIV-1 in human spermatozoa and sperm-derived embryos. PLoS ONE. 2013;8:e54801.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cameron RS, Liu C, Pihkala JP. Myosin 16 levels fluctuate during the cell cycle and are downregulated in response to DNA replication stress. Cytoskelet (Hoboken). 2013;70:328–48.

    CAS  Google Scholar 

  65. Gurevich I, Zhang C, Encarnacao PC, Struzynski CP, Livings SE, Aneskievich BJ. PPARgamma and NF-kappaB regulate the gene promoter activity of their shared repressor, TNIP1. Biochim Biophys Acta. 2012;1819:1–15.

    CAS  PubMed  Google Scholar 

  66. Ali N, Chandrakesan P, Nguyen CB, Husain S, Gillaspy AF, Huycke M, et al. Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases. Oncotarget. 2015;6:20327–44.

    PubMed  PubMed Central  Google Scholar 

  67. Ishida N, Kuba T, Aoki K, Miyatake S, Kawakita M, Sanai Y. Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. Genomics. 2005;85:106–16.

    CAS  PubMed  Google Scholar 

  68. Hall ET, Yan JP, Melancon P, Kuchta RD. 3’-Azido-3’-deoxythymidine potently inhibits protein glycosylation. A novel mechanism for AZT cytotoxicity. J Biol Chem. 1994;269:14355–8.

    CAS  PubMed  Google Scholar 

  69. Rappaport J, Volsky DJ. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neurovirol. 2015;21:235–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gyorffy B, Bottai G, Fleischer T, Munkacsy G, Budczies J, Paladini L, et al. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes. Int J Cancer J Int du Cancer. 2016;138:87–97.

    CAS  Google Scholar 

  71. Pimienta G, Fok V, Haslip M, Nagy M, Takyar S, Steitz JA. Proteomics and transcriptomics of BJAB cells expressing the Epstein-Barr virus noncoding RNAs EBER1 and EBER2. PLoS ONE. 2016;10:e0124638

    Google Scholar 

  72. Tomlinson GS, Bell LC, Walker NF, Tsang J, Brown JS, Breen R, et al. HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10. J Infect Dis. 2014;209:1055–65.

    CAS  PubMed  Google Scholar 

  73. Zhang Q, Yoo D. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling. Virus Res. 2016;226:128–41.

    CAS  PubMed  Google Scholar 

  74. Rustagi A, Gale M Jr. Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J Mol Biol. 2014;426:1161–77.

    CAS  PubMed  Google Scholar 

  75. Sivakumaran H, van der Horst A, Fulcher AJ, Apolloni A, Lin MH, Jans DA, et al. Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. J Virol. 2009;83:11694–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghosh SK, McCormick TS, Eapen BL, Yohannes E, Chance MR, Weinberg A. Comparison of epigenetic profiles of human oral epithelial cells from HIV-positive (on HAART) and HIV-negative subjects. Epigenetics. 2013;8:703–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 2010;24:574–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kirigin FF, Lindstedt K, Sellars M, Ciofani M, Low SL, Jones L, et al. Dynamic microRNA gene transcription and processing during T cell development. J Immunol. 2012;188:3257–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Steyaert S, Van Criekinge W, De Paepe A, Denil S, Mensaert K, Vandepitte K, et al. SNP-guided identification of monoallelic DNA-methylation events from enrichment-based sequencing data. Nucl Acids Res. 2014;42:e157.

    PubMed  Google Scholar 

  80. Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD. STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood. 2008;111:2062–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rojo N, Gomara MJ, Alsina MA, Haro I. Lipophilic derivatization of synthetic peptides belonging to NS3 and E2 proteins of GB virus-C (hepatitis G virus) and its effect on the interaction with model lipid membranes. J Pept Res. 2003;61:318–30.

    CAS  PubMed  Google Scholar 

  82. Pawlotsky JM, Roudot-Thoraval F, Muerhoff AS, Pellerin M, Germanidis G, Desai SM, et al. GB virus C (GBV-C) infection in patients with chronic hepatitis C. Influence on liver disease and on hepatitis virus behaviour: effect of interferon alfa therapy. J Med Virol. 1998;54:26–37.

    CAS  PubMed  Google Scholar 

  83. Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality. Rejuvenation Res. 2012;15:381–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Malovini A, Illario M, Iaccarino G, Villa F, Ferrario A, Roncarati R, et al. Association study on long-living individuals from Southern Italy identifies rs10491334 in the CAMKIV gene that regulates survival proteins. Rejuvenation Res. 2011;14:283–91.

    CAS  PubMed  Google Scholar 

  85. Renga B, Francisci D, D’Amore C, Schiaroli E, Mencarelli A, Cipriani S, et al. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS ONE. 2012;7:e35924.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park JH, et al. CD4 and CD8 T cell immune activation during chronic HIV infection: roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol. 2011;186:2106–16.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China [31701151, 31571343, 61462018], Natural Science Foundation of Shanghai [17ZR1412500, 16ZR1403100], Shanghai Sailing Program, the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) [2016245], the fund of the key Laboratory of Stem Cell Biology of Chinese Academy of Sciences [201703], Science and Technology Commission of Shanghai Municipality (STCSM) (18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Huang or Yu-Dong Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, S., Pan, X. et al. HIV infection alters the human epigenetic landscape. Gene Ther 26, 29–39 (2019). https://doi.org/10.1038/s41434-018-0051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0051-6

This article is cited by

Search

Quick links