Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel xenograft mouse model for testing approaches targeting human kappa light-chain diseases

Abstract

Patients with immunoglobulin (Ig) light-chain (LC) diseases such as LC light-chain amyloidosis die with organ failure and need new therapies. We sought a model to test anti-LC siRNA delivery to human plasma cells, requiring circulating LC, in vivo indicators of tumor presence, and capacity for multiple injections of delivery vehicle. The JJN-3 human myeloma reporter cell line expressing firefly luciferase (FFL) implanted intraperitoneally (IP) in the NOD scid γ (NSG) mouse has a 90% prompt tumor-take, rapid LC production, and in vivo indicators of tumor measurable on day 5 post-implant (κ LC, bioluminescent signal, and soluble B-cell maturation antigen [sBCMA]) with median day 5 serum levels of κ LC of 1482 ng/mL (range, 255–4831) and robust correlations with all in vivo indicators. In preliminary attempts to deliver siRNA against κ LC constant region mRNA, we identified the 306-O18B3 lipidoid nanoparticle (LNP) as promising, safe and efficient in vitro. In vivo in the JJN-3 NSG IP model, after daily IP 306-O18B3:siRNA injections on days 5–10, a reduction in κ LC was observed on day 8 between control and test groups that continued through day 12 at sacrifice. This model is potentially useful as a platform for refining anti-LC therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK, et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood. 2017;129:2111–9.

    Article  CAS  Google Scholar 

  2. Jaccard A, Comenzo RL, Hari P, Hawkins PN, Roussel M, Morel P, et al. Efficacy of bortezomib, cyclophosphamide and dexamethasone in treatment-naive patients with high-risk cardiac AL amyloidosis (Mayo Clinic stage III). Haematologica. 2014;99:1479–85.

    Article  CAS  Google Scholar 

  3. Hussain AS, Hari P, Brazauskas R, Arce-Lara C, Pasquini M, Hamadani M, et al. Changes in cardiac biomarkers with bortezomib treatment in patients with advanced cardiac amyloidosis. Am J Hematol. 2015;90:E212–3.

    Article  Google Scholar 

  4. Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215–24.

    Article  CAS  Google Scholar 

  5. Comenzo RL, Reece D, Palladini G, Seldin D, Sanchorawala V, Landau H, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia . 2012;26:2317–25.

    Article  CAS  Google Scholar 

  6. Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30:4541–9.

    Article  CAS  Google Scholar 

  7. Bradwell AR. Serum free light chain measurements move to center stage. Clin Chem. 2005;51:805–7.

    Article  CAS  Google Scholar 

  8. Wong SW, Toskic D, Warner M, Varga C, Moreno-Koehler A, Fein D, et al. Primary Amyloidosis with renal involvement: outcomes in 77 consecutive patients at a single center. Clin Lymphoma Myeloma Leuk. 2017;17:759–66.

    Article  Google Scholar 

  9. Landau H, Smith M, Landry C, Chou JF, Devlin SM, Hassoun H, et al. Long-term event-free and overall survival after risk-adapted melphalan and SCT for systemic light chain amyloidosis. Leukemia. 2017;31:136–42.

    Article  CAS  Google Scholar 

  10. Ma X, Zhou P, Wong SW, Warner M, Chaulagain C, Comenzo RL. siRNA targeting the kappa light chain constant region: preclinical testing of an approach to nonfibrillar and fibrillar light chain deposition diseases. Gene Ther. 2016;23:727–33.

    Article  CAS  Google Scholar 

  11. Zhou P, Ma X, Iyer L, Chaulagain C, Comenzo RL. One siRNA pool targeting the lambda constant region stops lambda light-chain production and causes terminal endoplasmic reticulum stress. Blood. 2014;123:3440–51.

    Article  CAS  Google Scholar 

  12. Hovey BM, Ward JE, Soo Hoo P, O’Hara CJ, Connors LH, Seldin DC. Preclinical development of siRNA therapeutics for AL amyloidosis. Gene Ther. 2011;18:1150–6.

    Article  CAS  Google Scholar 

  13. Phipps JE, Kestler DP, Foster JS, Kennel SJ, Donnell R, Weiss DT, et al. Inhibition of pathologic immunoglobulin-free light chain production by small interfering RNA molecules. Exp Hematol. 2010;38:1006–13.

    Article  CAS  Google Scholar 

  14. Ward JE, Ren R, Toraldo G, Soohoo P, Guan J, O’Hara C, et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood. 2011;118:6610–7.

    Article  CAS  Google Scholar 

  15. Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 2018;18:3814–22.

    Article  CAS  Google Scholar 

  16. Badros AZ, Goloubeva O, Rapoport AP, Ratterree B, Gahres N, Meisenberg B, et al. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol. 2005;23:4089–99.

    Article  CAS  Google Scholar 

  17. Bataille R, Grenier J, Sany J. Beta-2-microglobulin in myeloma: optimal use for staging, prognosis, and treatment—a prospective study of 160 patients. Blood. 1984;63:468–76.

    CAS  PubMed  Google Scholar 

  18. Boccadoro M, Gallone G, Frieri R, Pileri A, Bataille R, Klein B. Plasma cell labeling index, beta 2-microglobulin, and C-reactive protein: what is the best combination for myeloma prognosis? Blood. 1993;82:3507–8.

    CAS  PubMed  Google Scholar 

  19. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19:2048–60.

    Article  CAS  Google Scholar 

  20. Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123:3128–38.

    Article  CAS  Google Scholar 

  21. Ghermezi M, Li M, Vardanyan S, Harutyunyan NM, Gottlieb J, Berenson A, et al. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients. Haematologica. 2017;102:785–95.

    Article  CAS  Google Scholar 

  22. Laurent SA, Hoffmann FS, Kuhn PH, Cheng Q, Chu Y, Schmidt-Supprian M, et al. gamma-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun. 2015;6:7333.

    Article  CAS  Google Scholar 

  23. Ball RL, Knapp CM, Whitehead KA. Lipidoid nanoparticles for siRNA delivery to the intestinal epithelium: in vitro investigations in a Caco-2 model. PLoS ONE. 2015;10:e0133154.

    Article  Google Scholar 

  24. Xu Q, Ensign LM, Boylan NJ, Schon A, Gong X, Yang JC, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9:9217–27.

    Article  CAS  Google Scholar 

  25. Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt. 2005;10:41210.

    Article  Google Scholar 

  26. Wang M, Alberti K, Varone A, Pouli D, Georgakoudi I, Xu Q. Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles. Adv Healthc Mater. 2014;3:1398–403.

    Article  CAS  Google Scholar 

  27. Li Y, Bolinger J, Yu Y, Glass Z, Shi N, Yang L, et al. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater Sci. 2018;75:96–606.

    Article  Google Scholar 

  28. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA. 2016;113:2868–73.

    Article  CAS  Google Scholar 

  29. Jagannath S. Value of serum free light chain testing for the diagnosis and monitoring of monoclonal gammopathies in hematology. Clin Lymphoma Myeloma. 2007;7:518–23.

    Article  Google Scholar 

  30. Gooding RP, Bybee A, Cooke F, Little A, Marsh SG, Coelho E, et al. Phenotypic and molecular analysis of six human cell lines derived from patients with plasma cell dyscrasia. Br J Haematol. 1999;106:669–81.

    Article  CAS  Google Scholar 

  31. Dejoie T, Attal M, Moreau P, Harousseau JL, Avet-Loiseau H. Comparison of serum free light chain and urine electrophoresis for the detection of the light chain component of monoclonal immunoglobulins in light chain and intact immunoglobulin multiple myeloma. Haematologica. 2016;101:356–62.

    Article  CAS  Google Scholar 

  32. Reece DE, Sanchorawala V, Hegenbart U, Merlini G, Palladini G, Fermand JP, et al. Weekly and twice-weekly bortezomib in patients with systemic AL amyloidosis: results of a phase 1 dose-escalation study. Blood. 2009;114:1489–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For their continued support, we thank the Division of Hematology-Oncology and Departments of Medicine and Pathology and Laboratory Medicine at Tufts, the Amyloidosis and Myeloma Research Fund at Tufts, the Cam Neely and John Davis Myeloma Research Fund, the John C. Davis Program for Myeloma and Amyloid at Tufts, the Sidewater Family Fund, the Lavonne Horowitz Trust, the Werner and Elaine Dannheiser Fund for Research on the Biology of Aging of the Lymphoma Foundation, David and Barbara Levine (in memoriam), and the Demarest Lloyd Jr Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond L. Comenzo.

Ethics declarations

Conflict of interest

Drs Comenzo, Ma, and Zhou have a patent on the siRNA sequences used to knock down expression of the κ light chain constant region. Dr Comenzo has served as a consultant or advisor to Takeda Millennium, Unum, Prothena and Janssen, and has received clinical research funding from Takeda Millennium, Janssen, and Prothena Biotech. Drs Xu and Wang have numerous patents on nanostructure delivery vehicles. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhou, P., Kugelmass, A. et al. A novel xenograft mouse model for testing approaches targeting human kappa light-chain diseases. Gene Ther 26, 187–197 (2019). https://doi.org/10.1038/s41434-019-0070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0070-y

Search

Quick links