Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenovirus vector-mediated YKL-40 shRNA attenuates eosinophil airway inflammation in a murine asthmatic model

Abstract

Recent studies have revealed that YKL-40 is involved in the pathogenesis of asthma. However, its specific mechanism remains unclear. The present study aims to investigate the effect of adenovirus vector-mediated YKL-40 short hairpin RNA (shRNA) on regulation of airway inflammation in a murine asthmatic model. Mice were assessed for airway hyperresponsiveness (AHR), total leukocytes and the percentage of eosinophil cells in bronchoalveolar lavage fluid (BALF). YKL-40 mRNA and protein expression levels were detected using quantitative real-time PCR and western blot assays. Enzyme-linked immunosorbent assay (ELISA) was used to detect YKL-40 and eosinophil-related chemokine expression levels in BALF and serum. Lung histology analyses were performed to evaluate the degree of inflammatory cell infiltration around the airway and airway mucus secretion.YKL-40 shRNA significantly inhibited the YKL-40 gene expression in asthmatic mice. In addition, YKL-40 shRNA alleviated eosinophilic airway inflammation, AHR, airway mucus secretion and decreased the levels of YKL-40 in BALF and serum in a murine asthmatic model. The levels and mRNA expression of IL-5, IL-13 in asthmatic mice lung tissues, eotaxin, and GM-CSF in BALF and serum significantly decreased. Bone marrow signaling molecules including IL-5, eotaxin, and GM-CSF were correlated with decreased levels of YKL-40. The study reveals that YKL-40 could be involved in asthma inflammation by altering bone marrow signaling molecules. YKL-40 gene RNA interference could provide new therapeutic strategies for asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfection of adenovirus vector-mediated YKL-40 shRNA down-regulates the expression of YKL-40 in asthmatic mice.
Fig. 2: Transfection of adenovirus vector-mediated YKL-40 shRNA reduced total cell and eosinophil count in BALF.
Fig. 3: Mean percentage increases in lung resistance (RL) with increasing acetylcholine concentration.
Fig. 4: Concentrations of cytokines in BALF and serum analyses by ELISA.
Fig. 5: Suppression of mRNA expression by YKL-40 shRNA.
Fig. 6: Transfection of adenovirus vector-mediated YKL-40 shRNA suppresses infiltration of inflammatory cells and airway mucus secretion.

Similar content being viewed by others

References

  1. Komi DE, Kazemi T, Bussink AP. New insights into the relationship between chitinase-3-like-1 and asthma. Curr Allergy Asthma Rep. 2016;16:57.

    PubMed  Google Scholar 

  2. Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014;5:570.

    PubMed  PubMed Central  Google Scholar 

  3. Kulkarni NS, Hollins F, Sutcliffe A, Saunders R, Shah S, Siddiqui S, et al. Eosinophil protein in airway macrophages: a novel biomarker of eosinophilic inflammation in patients with asthma. J Allergy Clin Immunol. 2010;126:61–9.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lambrecht BN, Hammad H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet. 2010;376:835–43.

    CAS  PubMed  Google Scholar 

  5. Lopez AF, Williamson DJ, Gamble JR, Begley CG, Harlan JM, Klebanoff SJ, et al. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest. 1986;78:1220–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Denburg JA, Sehmi R, Saito H, Pil-Seob J, Inman MD, O’Byrne PM. Systemic aspects of allergic disease: bone marrow responses. J Allergy Clin Immunol. 2000;106:S242–6.

    CAS  PubMed  Google Scholar 

  7. Luhadia SK. Steroid resistant asthma. J Assoc Physicians India. 2014;62:38–40.

    CAS  PubMed  Google Scholar 

  8. Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993;268:25803–10.

    CAS  PubMed  Google Scholar 

  9. Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43:221–5.

    CAS  PubMed  Google Scholar 

  10. Shackelton LM, Mann DM, Millis AJ. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem. 1995;270:13076–83.

    CAS  PubMed  Google Scholar 

  11. Bigg HF, Wait R, Rowan AD, Cawston TE. The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J Biol Chem. 2006;281:21082–95.

    CAS  PubMed  Google Scholar 

  12. Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365:119–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rusak A, Jablonska K, Dziegiel P. The role of YKL-40 in a cancerous process. Postepy Hig Med Dosw (Online). 2016;70:1286–99.

    Google Scholar 

  14. Hansen JW, Thomsen SF, Porsbjerg C, Rasmussen LM, Harmsen L, Johansen JS, et al. YKL-40 and genetic status of CHI3L1 in a large group of asthmatics. Eur Clin Respir J. 2015;2:25117.

    PubMed  Google Scholar 

  15. Usemann J, Frey U, Mack I, Schmidt A, Gorlanova O, Roosli M, et al. CHI3L1 polymorphisms, cord blood YKL-40 levels and later asthma development. BMC Pulm Med. 2016;16:81.

    PubMed  PubMed Central  Google Scholar 

  16. Hartl D, Lee CG, Da Silva CA, Chupp GL, Elias JA. Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol. 2009;9:60–6.

    CAS  PubMed  Google Scholar 

  17. Lai T, Chen M, Deng Z, Wu LY, Li D., et al. YKL-40 is correlated with FEV1 and the asthma control test (ACT) in asthmatic patients: influence of treatment. BMC Pulm Med. 2015;15:1.

    PubMed  PubMed Central  Google Scholar 

  18. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.

    CAS  PubMed  Google Scholar 

  19. Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358:1682–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang H, Shi Z, Xiu Q, Li B, Sun Y. YKL-40-mediated interleukin 8 production may be closely associated with remodeling of bronchial smooth muscle cells. Am J Respir Crit Care Med. 2012;186:386. author reply -7

    PubMed  Google Scholar 

  21. Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357:2016–27.

    CAS  PubMed  Google Scholar 

  22. Lee CG, Elias JA. Role of breast regression protein-39/YKL-40 in asthma and allergic responses. Allergy Asthma Immunol Res. 2010;2:20–7.

    CAS  PubMed  Google Scholar 

  23. Ben SQ, Qiu YL, Zhou J, Zhou XY, Zhang S, Wu Y, et al. Ovalbumin enhances YKL-40, IL-5, GM-CSF, and eotaxin expression simultaneously in primarily cultured mouse tracheal epithelial cells. In Vitro Cell Dev Biol Anim. 2014;50:243–50.

    CAS  PubMed  Google Scholar 

  24. Khanna K, Chaudhuri R, Aich J, Pattnaik B, Panda L, Prakash YS, et al. Secretory inositol polyphosphate 4-phosphatase protects against airway inflammation and remodeling. Am J Respir Cell Mol Biol. 2019;60:399–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bao W, Zhang Y, Zhang M, Bao A, Fei X, Zhang X, et al. Effects of ozone repeated short exposures on the airway/lung inflammation, airway hyperresponsiveness and mucus production in a mouse model of ovalbumin-induced asthma. Biomed Pharmacother. 2018;101:293–303.

    CAS  PubMed  Google Scholar 

  26. Fei X, Bao W, Zhang P, Zhang X, Zhang G, Zhang Y, et al. Inhalation of progesterone inhibits chronic airway inflammation of mice exposed to ozone. Mol Immunol. 2017;85:174–84.

    CAS  PubMed  Google Scholar 

  27. McMillan SJ, Xanthou G, Lloyd CM. Therapeutic administration of Budesonide ameliorates allergen-induced airway remodelling. Clin Exp Allergy. 2005;35:388–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rathcke CN, Raymond I, Kistorp C, Hildebrandt P, Faber J, Vestergaard H. Low grade inflammation as measured by levels of YKL-40: association with an increased overall and cardiovascular mortality rate in an elderly population. Int J Cardiol. 2010;143:35–42.

    PubMed  Google Scholar 

  29. Kastrup J, Johansen JS, Winkel P, Hansen JF, Hildebrandt P, Jensen GB, et al. High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease. Eur Heart J. 2009;30:1066–72.

    CAS  PubMed  Google Scholar 

  30. Rathcke CN, Persson F, Tarnow L, Rossing P, Vestergaard H. YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes Care. 2009;32:323–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonneh-Barkay D, Wang G, Laframboise WA, Wiley CA, Bissel SJ. Exacerbation of experimental autoimmune encephalomyelitis in the absence of breast regression protein 39/chitinase 3-like 1. J Neuropathol Exp Neurol. 2012;71:948–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kazakova M, Batalov A, Deneva T, Mateva N, Kolarov Z, Sarafian V. Relationship between sonographic parameters and YKL-40 levels in rheumatoid arthritis. Rheumatol Int. 2013;33:341–6.

    CAS  PubMed  Google Scholar 

  33. Sekine T, Masuko-Hongo K, Matsui T, Asahara H, Takigawa M, Nishioka K, et al. Recognition of YKL-39, a human cartilage related protein, as a target antigen in patients with rheumatoid arthritis. Ann Rheum Dis. 2001;60:49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki H, Boki H, Kamijo H, Nakajima R, Oka T, Shishido-Takahashi N, et al. YKL-40 promotes proliferation of cutaneous T-cell lymphoma tumor cells through extracellular signal-regulated kinase pathways. J Invest Dermatol. 2020;140:860–8.

    CAS  PubMed  Google Scholar 

  35. Wang H, Long XB, Cao PP, Wang N, Liu Y, Cui YH, et al. Clara cell 10-kD protein suppresses chitinase 3-like 1 expression associated with eosinophilic chronic rhinosinusitis. Am J Respir Crit Care Med. 2010;181:908–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, et al. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-kappaB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol. 2013;190:438–46.

    CAS  PubMed  Google Scholar 

  37. Ortega H, Prazma C, Suruki RY, Li H, Anderson WH. Association of CHI3L1 in African-Americans with prior history of asthma exacerbations and stress. J Asthma. 2013;50:7–13.

    CAS  PubMed  Google Scholar 

  38. Naglot S, Aggarwal P, Dey S, Dalal K. Estimation of serum YKL-40 by real-time surface plasmon resonance technology in North-Indian asthma patients. J Clin Lab Anal. 2017;31:e22028. https://doi.org/10.1002/jcla.22028.

    Google Scholar 

  39. Lee CG, Dela Cruz CS, Herzog E, Rosenberg SM, Ahangari F, Elias JA. YKL-40, a chitinase-like protein at the intersection of inflammation and remodeling. Am J Respir Crit Care Med. 2012;185:692–4.

    CAS  PubMed  Google Scholar 

  40. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 2009;206:1149–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Q, Chai SJ, Qian YY, Zhang M, Wang K. Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma. Acta Pharmacol Sin. 2012;33:1525–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwasaki H, Mizuno S, Mayfield R, Shigematsu H, Arinobu Y, Seed B, et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med. 2005;201:1891–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ben S, Li X, Xu F, Xu W, Li W, Wu Z, et al. Treatment with anti-CC chemokine receptor 3 monoclonal antibody or dexamethasone inhibits the migration and differentiation of bone marrow CD34 progenitor cells in an allergic mouse model. Allergy. 2008;63:1164–76.

    CAS  PubMed  Google Scholar 

  44. Salter BM, Sehmi R. Hematopoietic processes in eosinophilic asthma. Chest. 2017;152:410–6.

    PubMed  Google Scholar 

  45. Nobs SP, Kayhan M, Kopf M. GM-CSF intrinsically controls eosinophil accumulation in the setting of allergic airway inflammation. J Allergy Clin Immunol. 2019;143:1513–24.e2.

    CAS  PubMed  Google Scholar 

  46. Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M, et al. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol. 2009;123:472–8.

    CAS  PubMed  Google Scholar 

  47. Allakhverdi Z, Delespesse G. Hematopoietic progenitor cells are innate Th2 cytokine-producing cells. Allergy. 2012;67:4–9.

    CAS  PubMed  Google Scholar 

  48. Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, et al. Modeling T(H) 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev. 2017;278:20–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar RK, Thomas PS, Seetoo DQ, Herbert C, McKenzie AN, Foster PS, et al. Eotaxin expression by epithelial cells and plasma cells in chronic asthma. Lab Invest. 2002;82:495–504.

    CAS  PubMed  Google Scholar 

  50. Han M, Hu R, Ma J, Zhang B, Chen C, Li H, et al. Fas signaling in dendritic cells mediates Th2 polarization in HDM-induced allergic pulmonary inflammation. Front Immunol. 2018;9:3045.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomez JL, Yan X, Holm CT, Grant N, Liu Q, Cohn L, et al. Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur Respir J. 2017;50:1700800. https://doi.org/10.1183/13993003.00800-2017.

  52. Li TM, Liu SC, Huang YH, Huang CC, Hsu CJ, Tsai CH, et al. YKL-40-induced inhibition of miR-590-3p promotes interleukin-18 expression and angiogenesis of endothelial progenitor cells. Int J Mol Sci. 2017;18:920. https://doi.org/10.3390/ijms18050920.

  53. Kang MJ, Yoon CM, Nam M, Kim DH, Choi JM, Lee CG, et al. Role of chitinase 3-like-1 in interleukin-18-induced pulmonary type 1, type 2, and type 17 inflammation; alveolar destruction; and airway fibrosis in the murine lung. Am J Respir Cell Mol Biol. 2015;53:863–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kandikattu HK, Upparahalli Venkateshaiah S, Mishra A. Synergy of interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev. 2019;47:83–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sawada M, Kawayama T, Imaoka H, Sakazaki Y, Oda H, Takenaka S, et al. IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13. PLoS One. 2013;8:e54623.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu MH, Yuan FL, Wang SJ, Xu HY, Li CW, Tong X. Association of interleukin-18 and asthma. Inflammation. 2017;40:324–7.

    CAS  PubMed  Google Scholar 

  57. Leggiero E, Labruna G, Iaffaldano L, Lombardo B, Greco A, Fiorenza D, et al. Helper-dependent adenovirus-mediated gene transfer of a secreted LDL receptor/transferrin chimeric protein reduces aortic atherosclerosis in LDL receptor-deficient mice. Gene Ther. 2019;26:121–30.

    CAS  PubMed  Google Scholar 

  58. Zabner J, Petersen DM, Puga AP, Graham SM, Couture LA, Keyes LD, et al. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nat Genet. 1994;6:75–83.

    CAS  PubMed  Google Scholar 

  59. Zhang WW, Alemany R, Wang J, Koch PE, Ordonez NG, Roth JA. Safety evaluation of Ad5CMV-p53 in vitro and in vivo. Hum Gene Ther. 1995;6:155–64.

    CAS  PubMed  Google Scholar 

  60. Chen L, Zheng J, Xue Q, Zhao Y. YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E(-/-) mice fed a high-fat diet. Heart Vessels. 2019;34:1874–81.

    PubMed  Google Scholar 

  61. Liu L, Zhang X, Liu Y, Zhang L, Zheng J, Wang J, et al. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res. 2019;20:95.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No: 81570018 and No: 81970022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Ben.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Bao, A., Zheng, Y. et al. Adenovirus vector-mediated YKL-40 shRNA attenuates eosinophil airway inflammation in a murine asthmatic model. Gene Ther 28, 177–185 (2021). https://doi.org/10.1038/s41434-020-00202-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-00202-0

Search

Quick links