Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1

Abstract

Oncolytic viruses selectively replicate and destroy cancer cells while sparing normal cells, prompting their recognition as promising antitumor agents. Herpes simplex virus (HSV) is suitable as an anticancer agent, given its considerable therapeutic gene capacity and excellent safety profile in clinical trials. Interleukin (IL)-12 induces a Th1-type immune response that mediates interferon (IFN)-γ release from natural killer (NK), CD4+ and CD8+ T cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the generation of antigen-presenting cells and promotes dendritic cell differentiation. We established a novel oncolytic HSV-1 (∆6/GM/IL12) co-expressing IL-12 and GM-CSF and tested its effects against a B16-F10 murine melanoma model. ∆6/GM/IL12 administration diminished tumor growth and prolonged survival compared to treatment with ∆6/GM or ∆6/IL12 expressing each individual cytokine. Flow cytometry and histological analysis showed increased activation of CD4+ and CD8+ T cells in ∆6/GM/IL12-treated mice. Enzyme-linked immunosorbent spot assay showed an increase in the phenotypically characterized IFN-γ-producing cell population in ∆6/GM/IL12-treated mice. Moreover, ∆6/GM/IL12 induced a B16-F10-specific cytotoxic immune response that enhanced IFN-γ production by CD3+CD8+ T cells. Therefore, IL-12 and GM-CSF from an engineered oncolytic HSV have a synergistic effect, boosting the immune response to increase their antitumor effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of recombinant HSV-1 strains.
Fig. 2: Characterization of cytokine-expressing oHSV-1 strains.
Fig. 3: Antitumor effects and survival rates in B16-F10 tumor-bearing mice.
Fig. 4: Immune response to treatment with cytokine-expressing oHSV-1.
Fig. 5: Cancer cell-specific immune responses to cytokine-expressing oHSV-1 strains.
Fig. 6: Histology of tumors from mice injected with PBS, ∆6, ∆6/GM, ∆6/IL12, or ∆6/GM/IL12.

Similar content being viewed by others

References

  1. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O. et al.Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy.Cell. 2017;170:1109–19. e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  3. Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol. 2018;9:866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer. 2016;4:53.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Manzano C, Balague C, Alemany R, Lemoine MG, Mitlianga P, Jiang H, et al. A novel E1A-E1B mutant adenovirus induces glioma regression in vivo. Oncogene. 2004;23:1821–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–67.

    Article  CAS  PubMed  Google Scholar 

  8. Kim M, Williamson CT, Prudhomme J, Bebb DG, Riabowol K, Lee PW, et al. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status. Oncogene. 2010;29:3990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cawood R, Hills T, Wong SL, Alamoudi AA, Beadle S, Fisher KD, et al. Recombinant viral vaccines for cancer. Trends Mol Med. 2012;18:564–74.

    Article  CAS  PubMed  Google Scholar 

  11. Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6:226ra32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gierasch WW, Zimmerman DL, Ward SL, Vanheyningen TK, Romine JD, Leib DA. Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods. 2006;135:197–206.

    Article  CAS  PubMed  Google Scholar 

  13. Kanerva A, Nokisalmi P, Diaconu I, Koski A, Cerullo V, Liikanen I, et al. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res. 2013;19:2734–44.

    Article  CAS  PubMed  Google Scholar 

  14. Peters C, Rabkin SD. Designing herpes viruses as oncolytics. Mol Ther Oncolytics. 2015;2:15010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin J, Markert JM, Leavenworth JW. Modulation of the intratumoral immune landscape by oncolytic herpes simplex virus virotherapy. Front Oncol. 2017;7:136.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Friedman GK, Nan L, Haas MC, Kelly VM, Moore BP, Langford CP, et al. gamma(1)34.5-deleted HSV-1-expressing human cytomegalovirus IRS1 gene kills human glioblastoma cells as efficiently as wild-type HSV-1 in normoxia or hypoxia. Gene Ther. 2015;22:348–55.

    Article  CAS  PubMed  Google Scholar 

  17. Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48:399–416.

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  19. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, et al. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res. 2002;62:1326–9.

    CAS  PubMed  Google Scholar 

  21. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer. 2003;98:1089–99.

    Article  PubMed  Google Scholar 

  22. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers. 2011;3:3856–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Perez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. BrJ Cancer. 2019;120:6–15.

    Article  CAS  Google Scholar 

  24. Ino Y, Saeki Y, Fukuhara H, Todo T. Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res. 2006;12:643–52.

    Article  CAS  PubMed  Google Scholar 

  25. Patel MR, Jacobson BA, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-beta is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11–22.

    Article  CAS  PubMed  Google Scholar 

  27. Lasek W, Zagozdzon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother. 2014;63:419–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas ED, Meza-Perez S, Bevis KS, Randall TD, Gillespie GY, Langford C, et al. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice. J Ovarian Res. 2016;9:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Veinalde R, Grossardt C, Hartmann L, Bourgeois-Daigneault MC, Bell JC, Jager D, et al. Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology. 2017;6:e1285992.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016;45:963–73.

    Article  CAS  PubMed  Google Scholar 

  31. Simmons AD, Li B, Gonzalez-Edick M, Lin C, Moskalenko M, Du T, et al. GM-CSF-secreting cancer immunotherapies: preclinical analysis of the mechanism of action. Cancer Immuno Immunother. 2007;56:1653–65.

    Article  CAS  Google Scholar 

  32. Dranoff G. GM-CSF-secreting melanoma vaccines. Oncogene. 2003;22:3188–92.

    Article  CAS  PubMed  Google Scholar 

  33. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90:3539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Streby KA, Geller JI, Currier MA, Warren PS, Racadio JM, Towbin AJ, et al. Intratumoral Injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin Cancer Res. 2017;23:3566–74.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Zhao L, Hang Z, Guo H, Zhang M. Evaluation of HSV-1 and adenovirus vector-mediated infection, replication and cytotoxicity in lymphoma cell lines. Oncol Rep. 2011;26:637–44.

    CAS  PubMed  Google Scholar 

  36. Hoffmann D, Wildner O. Comparison of herpes simplex virus- and conditionally replicative adenovirus-based vectors for glioblastoma treatment. Cancer Gene Ther. 2007;14:627–39.

    Article  CAS  PubMed  Google Scholar 

  37. Goldstein DJ, Weller SK. Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol. 1988;62:196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldstein DJ, Weller SK. Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology. 1988;166:41–51.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Q, Guo J, Jia W. Intracerebral recombinant HSV-1 vector does not reactivate latent HSV-1. Gene Ther. 1997;4:1300–4.

    Article  CAS  PubMed  Google Scholar 

  40. Aghi M, Visted T, Depinho RA, Chiocca EA. Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene. 2008;27:4249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spear MA, Sun F, Eling DJ, Gilpin E, Kipps TJ, Chiocca EA, et al. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation. Cancer Gene Ther. 2000;7:1051–9.

    Article  CAS  PubMed  Google Scholar 

  42. Aye Y, Li M, Long MJ, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene. 2015;34:2011–21.

    Article  CAS  PubMed  Google Scholar 

  43. Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, et al. Ribonucleotide reductase requires subunit switching in hypoxia to maintain DNA replication. Mol Cell. 2017;66:206–20. e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shao J, Liu X, Zhu L, Yen Y. Targeting ribonucleotide reductase for cancer therapy. Expert Opin Therap Targets. 2013;17:1423–37.

    Article  CAS  Google Scholar 

  45. Chen CW, Tsao N, Huang LY, Yen Y, Liu X, Lehman C, et al. The impact of dUTPase on ribonucleotide reductase-induced genome instability in cancer cells. Cell Rep. 2016;16:1287–99.

    Article  CAS  PubMed  Google Scholar 

  46. Currier MA, Gillespie RA, Sawtell NM, Mahller YY, Stroup G, Collins MH, et al. Efficacy and safety of the oncolytic herpes simplex virus rRp450 alone and combined with cyclophosphamide. Mol Ther. 2008;16:879–85.

    Article  CAS  PubMed  Google Scholar 

  47. Mahvi DM, Henry MB, Albertini MR, Weber S, Meredith K, Schalch H, et al. Intratumoral injection of IL-12 plasmid DNA—results of a phase I/IB clinical trial. Cancer Gene Ther. 2007;14:717–23.

    Article  CAS  PubMed  Google Scholar 

  48. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997;3:409–17.

    CAS  PubMed  Google Scholar 

  49. Bajetta E, Del Vecchio M, Mortarini R, Nadeau R, Rakhit A, Rimassa L, et al. Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin Cancer Res. 1998;4:75–85.

    CAS  PubMed  Google Scholar 

  50. Pappo I, Tahara H, Robbins PD, Gately MK, Wolf SF, Barnea A, et al. Administration of systemic or local interleukin-2 enhances the anti-tumor effects of interleukin-12 gene therapy. J Surg Res. 1995;58:218–26.

    Article  CAS  PubMed  Google Scholar 

  51. Lasek W, Basak G, Switaj T, Jakubowska AB, Wysocki PJ, Mackiewicz A, et al. Complete tumour regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother. 2004;53:363–72.

    Article  CAS  PubMed  Google Scholar 

  52. Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH, et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Human Gene Ther. 2001;12:671–84.

    Article  CAS  Google Scholar 

  53. Alessandrini F, Menotti L, Avitabile E, Appolloni I, Ceresa D, Marubbi D, et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene. 2019;38:4467–79.

    Article  CAS  PubMed  Google Scholar 

  54. Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32:253–67. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Varghese S, Rabkin SD, Liu R, Nielsen PG, Ipe T, Martuza RL. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther. 2006;13:253–65.

    Article  CAS  PubMed  Google Scholar 

  56. Anderson R, Macdonald I, Corbett T, Hacking G, Lowdell MW, Prentice HG. Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Human Gene Ther. 1997;8:1125–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor David A. Leib (Geisel School of Medicine at Dartmouth) for providing us with the KOS-37 BAC and Cre-Vero cell lines.

Funding

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03935312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joo-Hang Kim or Kyung-Ju Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KJ., Moon, D., Kong, S.J. et al. Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1. Gene Ther 28, 186–198 (2021). https://doi.org/10.1038/s41434-020-00205-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-00205-x

This article is cited by

Search

Quick links