Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of oncolytic viruses and viral vectors on immunity in glioblastoma

Abstract

Glioblastoma (GBM) is regarded as an incurable disease due to its poor prognosis and limited treatment options. Virotherapies were once utilized on cancers for their oncolytic effects. And they are being revived on GBM treatment, as accumulating evidence presents the immunogenic effects of virotherapies in remodeling immunosuppressive GBM microenvironment. In this review, we focus on the immune responses induced by oncolytic virotherapies and viral vectors in GBM. The current developments of GBM virotherapies are briefly summarized, followed by a detailed depiction of their immune response. Limitations and lessons inferred from earlier experiments and trials are discussed. Moreover, we highlight the importance of engaging the immune responses induced by virotherapies into the multidisciplinary management of GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic picture summarizing the immune-mediated effects induced by oncolytic virus and viral vectors in GBM.
Fig. 2: Potential limitations of virotherapies on GBM.

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro-oncology. 2018;20:iv1–86.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2016;375:263–73.

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  4. Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25:5799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Asadi-Moghaddam K, Chiocca EA. Gene- and viral-based therapies for brain tumors. Neurotherapeutics. 2009;6:547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aurelian L. Oncolytic viruses as immunotherapy: progress and remaining challenges. OncoTargets Ther. 2016;9:2627–37.

    Article  CAS  Google Scholar 

  7. Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, hrling K, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 2019;7:145.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–43.

    Article  CAS  PubMed  Google Scholar 

  9. Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther. 2014;22:1048–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai B, Roife D, Kang Y, Gumin J, Rios Perez MV, Li X, et al. Preclinical evaluation of sequential combination of oncolytic adenovirus delta-24-RGD and phosphatidylserine-targeting antibody in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2017;16:662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I Study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36:1419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 2000;97:6803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Eng J Med. 2018;379:150–61.

    Article  CAS  Google Scholar 

  14. Manikandan C, Kaushik A, Sen D. Viral vector: potential therapeutic for glioblastoma multiforme. Cancer Gene Ther. 2019;27:270–9.

    Article  CAS  PubMed  Google Scholar 

  15. GuhaSarkar D, Neiswender J, Su Q, Gao G, Sena-Esteves M. Intracranial AAV-IFN-beta gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Mol Oncol. 2017;11:180–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Human gene Ther. 2000;11:2389–401.

    Article  CAS  Google Scholar 

  17. Dalba C, Klatzmann D, Logg CR, Kasahara N. Beyond oncolytic virotherapy: replication-competent retrovirus vectors for selective and stable transduction of tumors. Current Gene Ther. 2005;5:655–67.

    Article  CAS  Google Scholar 

  18. Philbrick BD, Adamson DC. Early clinical trials of Toca 511 and Toca FC show a promising novel treatment for recurrent malignant glioma. Expert Opin Investig Drugs. 2019;28:207–16.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan MH, Wei LX, Zhou RS, Xu HF, Wang JY, Bai QR. Therapeutic effects of adenovirus-mediated CD and NIS expression combined with Na(131)I/5-FC on human thyroid cancer. Oncol Lett. 2017;14:7431–6.

    PubMed  PubMed Central  Google Scholar 

  20. Ji N, Weng D, Liu C, Gu Z, Chen S, Guo Y, et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget. 2016;7:4369–78.

    Article  PubMed  Google Scholar 

  21. Westphal M, Yla-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. The Lancet Oncol. 2013;14:823–33.

    Article  CAS  PubMed  Google Scholar 

  22. Varda-Bloom N, Shaish A, Gonen A, Levanon K, Greenbereger S, Ferber S, et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Ther. 2001;8:819–27.

    Article  CAS  PubMed  Google Scholar 

  23. Brenner AJ, Peters KB, Vredenburgh J, Bokstein F, Blumenthal DT, Yust-Katz S, et al. Safety and efficacy of VB-111, an anti-cancer gene-therapy, in patients with recurrent glioblastoma: results of a phase I/II study. Neuro-oncology. 2019;22:694–704.

    Article  CAS  PubMed Central  Google Scholar 

  24. Cloughesy TF, Brenner A, de Groot JF, Butowski NA, Zach L, Campian JL, et al. A randomized controlled phase III study of VB-111 combined with bevacizumab vs. bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro-oncology. 2019;22:705–17.

    Article  CAS  PubMed Central  Google Scholar 

  25. Aguilar LK, Guzik BW, Aguilar-Cordova E. Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development. J Cell Biochem. 2011;112:1969–77.

    Article  CAS  PubMed  Google Scholar 

  26. Nduom EK, Weller M, Heimberger AB. Immunosuppressive mechanisms in glioblastoma. Neuro-oncology. 2015;17:vii9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reardon DAO A, Brandes AA, Rieger J, Wick A, Sepulveda J, Phuphanich S, et al. OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro-oncology. 2017;19:21.

    Article  Google Scholar 

  28. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N. Eng J Med. 2016;375:2561–9.

    Article  CAS  Google Scholar 

  29. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565:234–9.

    Article  CAS  PubMed  Google Scholar 

  30. Martikainen M, Essand M. Virus-based immunotherapy of glioblastoma. Cancers. 2019;11:186.

    Article  CAS  PubMed Central  Google Scholar 

  31. Russell SJ, Barber GN. Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell. 2018;33:599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2:295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Q, Liu F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis. 2020;11:485.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peters C, Rabkin SD. Designing herpes viruses as oncolytics. Mol Ther Oncol. 2015;2:15010.

    Article  CAS  Google Scholar 

  35. Liu R, Martuza RL, Rabkin SD. Intracarotid delivery of oncolytic HSV vector G47Delta to metastatic breast cancer in the brain. Gene Ther. 2005;12:647–54.

    Article  CAS  PubMed  Google Scholar 

  36. Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS, et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA. 2013;110:12006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saha D, Martuza RL, Rabkin SD. Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy. 2018;10:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bernstock JD, Vicario N, Rong L, Valdes PA, Choi BD, Chen JA, et al. A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition. Oncoimmunology. 2019;8:e1678921.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Passaro C, Alayo Q, De Laura I, McNulty J, Grauwet K, Ito H, et al. Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin Cancer Res. 2019;25:290–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wirsching HG, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino PJ, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4:e128217.

    Article  PubMed Central  Google Scholar 

  41. Wirsching HG, Arora S, Zhang H, Szulzewsky F, Cimino PJ, Queva C, et al. Cooperation of oncolytic virotherapy with VEGF-neutralizing antibody treatment in IDH wildtype glioblastoma dependends on MMP9. Neuro-oncology. 2019;21:1607–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rivera-Molina Y, Jiang H, Fueyo J, Nguyen T, Shin DH, Youssef G, et al. GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory. Neuro-oncol Adv. 2019;1:vdz009.

    Article  Google Scholar 

  43. Jiang H, Rivera-Molina Y, Gomez-Manzano C, Clise-Dwyer K, Bover L, Vence LM, et al. Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res. 2017;77:3894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walton RW, Brown MC, Sacco MT, Gromeier M. Engineered oncolytic poliovirus PVSRIPO subverts MDA5-dependent innate immune responses in cancer cells. J Virol. 2018;92:e00879–18.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brown MC, Holl EK, Boczkowski D, Dobrikova E, Mosaheb M, Chandramohan V, et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med. 2017;9:eaan4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015;33:3541–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Current Opin Virol. 2015;13:81–5.

    Article  CAS  Google Scholar 

  48. Puntel M, Muhammad AK, Candolfi M, Salem A, Yagiz K, Farrokhi C, et al. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics. J Virol. 2010;84:6007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lowenstein PR, Castro MG. Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients. Clini Immunol. 2018;189:43–51.

    Article  CAS  Google Scholar 

  50. Predina JD, Kapoor V, Judy BF, Cheng G, Fridlender ZG, Albelda SM, et al. Cytoreduction surgery reduces systemic myeloid suppressor cell populations and restores intratumoral immunotherapy effectiveness. J Hematol Oncol. 2012;5:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Predina JD, Judy B, Aliperti LA, Fridlender ZG, Blouin A, Kapoor V, et al. Neoadjuvant in situ gene-mediated cytotoxic immunotherapy improves postoperative outcomes in novel syngeneic esophageal carcinoma models. Cancer Gene Ther. 2011;18:871–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Speranza MC, Passaro C, Ricklefs F, Kasai K, Klein SR, Nakashima H, et al. Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro-oncology. 2018;20:225–35.

    Article  CAS  PubMed  Google Scholar 

  53. Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Molecular Ther. 2000;1:195–203.

    Article  CAS  Google Scholar 

  54. Kieran MW, Goumnerova L, Manley P, Chi SN, Marcus KJ, Manzanera AG, et al. Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro-oncology. 2019;21:537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiocca EA, Aguilar LK, Bell SD, Kaur B, Hardcastle J, Cavaliere R, et al. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol. 2011;29:3611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro-oncology. 2016;18:1137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitchell LA, Lopez Espinoza F, Mendoza D, Kato Y, Inagaki A, Hiraoka K, et al. Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro-oncology. 2017;19:930–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ye L, Park JJ, Dong MB, Yang Q, Chow RD, Peng L, et al. In vivo CRISPR screening in CD8 T cells with AAV-sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat Biotechnol. 2019;37:1302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577:689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol. 2003;21:2508–18.

    Article  CAS  PubMed  Google Scholar 

  61. Gao Y, Ng SS, Chau DH, Yao H, Yang C, Man K, et al. Development of recombinant adeno-associated virus and adenovirus cocktail system for efficient hTERTC27 polypeptide-mediated cancer gene therapy. Cancer Gene Ther. 2008;15:723–32.

    Article  CAS  PubMed  Google Scholar 

  62. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122:23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoo JY, Swanner J, Otani Y, Nair M, Park F, Banasavadi-Siddegowda Y, et al. oHSV therapy increases trametinib access to brain tumors and sensitizes them in vivo. Neuro-oncology. 2019;21:1131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alayo QA, Ito H, Passaro C, Zdioruk M, Mahmoud AB, Grauwet K, et al. Glioblastoma infiltration of both tumor- and virus-antigen specific cytotoxic T cells correlates with experimental virotherapy responses. Scientific Rep. 2020;10:5095.

    Article  CAS  Google Scholar 

  65. Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26:1509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, et al. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Investig. 2018;128:1413–28.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J, et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist. 2017;22:1478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013:238428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hogan DJ, Zhu JJ, Diago OR, Gammon D, Haghighi A, Lu G, et al. Molecular analyses support the safety and activity of retroviral replicating vector Toca 511 in patients. Clin Cancer Res. 2018;24:4680–93.

    Article  CAS  PubMed  Google Scholar 

  73. McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66:2509–13.

    Article  CAS  PubMed  Google Scholar 

  74. Pan M, Zhang Y, Deng Z, Yan F, Hong G. Noninvasive and local delivery of adenoviral-mediated herpes simplex virus thymidine kinase to treat glioma through focused ultrasound-induced blood-brain barrier opening in rats. J Biomed Nanotechnol. 2018;14:2031–41.

    Article  CAS  PubMed  Google Scholar 

  75. Hiraoka K, Inagaki A, Kato Y, Huang TT, Mitchell LA, Kamijima S, et al. Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro-oncology. 2017;19:918–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fridlender ZG, Sun J, Singhal S, Kapoor V, Cheng G, Suzuki E, et al. Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther. 2010;18:1947–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol. 2012;13:1817–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saha D, Rabkin SD, Martuza RL. Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J Immunother Cancer. 2020;8:e000345.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Trus I, Berube N, Jiang P, Rak J, Gerdts V, Karniychuk U. Zika virus with increased CpG dinucleotide frequencies shows oncolytic activity in glioblastoma stem cells. Viruses. 2020;12:579.

    Article  CAS  PubMed Central  Google Scholar 

  80. Zhang X, Wang H, Sun Y, Qi M, Li W, Zhang Z, et al. Enterovirus A71 oncolysis of malignant gliomas. Mol Ther. 2020;28:1533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Otani Y, Yoo JY, Chao S, Liu J, Jaime-Ramirez AC, Lee TJ, et al. Oncolytic HSV-infected glioma cells activate NOTCH in adjacent tumor cells sensitizing tumors to gamma secretase inhibition. Clin Cancer Res. 2020;26:2381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Human Gene Ther. 2000;11:2197–205.

    Article  CAS  Google Scholar 

  83. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004;10:967–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the American Journal Experts for their excellent work in language editing. The first writer PL wants to thank his girlfriend Jiamin Che for her accompany and supports all these years.

Funding

This work was funded by the [Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences] under grant [number 2016-I2M-2-001]; [Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program] under grant [number 2019ZLH101]; and [Fundamental Research Funds for the Central Universities] under grant [number 3332018029].

Author information

Authors and Affiliations

Authors

Contributions

Research screening and collecting, YW, ZK, WC, and JL; writing—draft preparation, review, and editing, PL and YW; visualization and images, PL; format and grammar editing, WC and YT; supervision, WM and YW; funding acquisition, WM and YW notably. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wenbin Ma or Yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Wang, Y., Wang, Y. et al. Effects of oncolytic viruses and viral vectors on immunity in glioblastoma. Gene Ther 29, 115–126 (2022). https://doi.org/10.1038/s41434-020-00207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-00207-9

This article is cited by

Search

Quick links