Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Effect of connective tissue growth factor gene editing using adeno-associated virus–mediated CRISPR–Cas9 on rabbit glaucoma filtering surgery outcomes

Abstract

Suppressing excessive wound healing responses is critical to ensure surgical success in glaucoma filtration surgery (GFS). Currently used adjunctive materials can lead to side effects due to the nonselectivity in cell inhibition and may require repeated applications. The clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system may become a compelling opportunity in glaucoma surgery due to its high selectivity and permanent effect. Connective tissue growth factor (CTGF) is one of the most potent stimulators of tissue fibrosis in the eye. Therefore, we tested the effect of CTGF suppression using the CRISPR–Cas9 system on GFS fibrosis. We used an adeno-associated virus (AAV)–CRISPR–Cas9 system and confirmed successful CTGF suppression was achieved in fibroblasts in vitro through western blot analysis and deep sequencing. In the in vivo intereye-comparison rabbit GFS model, CRISPR–CTGF-treated eyes showed significantly better survival of the surgery site, less subconjunctival fibrosis, limited collagen deposition, and reduced cellularity than untreated eyes. Our results suggest a new possibility of CRISPR–Cas9-mediated CTGF suppression to improve human GFS outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro suppression of CTGF expression by the CRISPR genome-editing system.
Fig. 2: In vivo delivery of viral vectors and suppression of CTGF using the AAV–CRISPR genome-editing system.
Fig. 3: Bleb survival and characteristics in the CRISPR-CTGF-treated and untreated groups.
Fig. 4: Photographs for the bleb appearance in the CRISPR–CTGF-treated and untreated groups.
Fig. 5: Histopathologic and immunohistochemistry results in CRISPR–CTGF-treated and untreated groups.

Similar content being viewed by others

References

  1. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    PubMed  Google Scholar 

  2. Skuta GL, Parrish RK 2nd. Wound healing in glaucoma filtering surgery. Surv Ophthalmol. 1987;32:149–70.

    CAS  PubMed  Google Scholar 

  3. Five-year follow-up of the Fluorouracil Filtering Surgery Study. The Fluorouracil Filtering Surgery Study Group. Am J Ophthalmol. 1996;121:349–66. https://pubmed.ncbi.nlm.nih.gov/8604728/.

  4. Robin AL, Ramakrishnan R, Krishnadas R, Smith SD, Katz JD, Selvaraj S, et al. A long-term dose-response study of mitomycin in glaucoma filtration surgery. Arch Ophthalmol. 1997;115:969–74.

    CAS  PubMed  Google Scholar 

  5. Crowston JG, Akbar AN, Constable PH, Occleston NL, Daniels JT, Khaw PT. Antimetabolite-induced apoptosis in Tenon’s capsule fibroblasts. Invest Ophthalmol Vis Sci. 1998;39:449–54.

    CAS  PubMed  Google Scholar 

  6. Mietz H, Addicks K, Bloch W, Krieglstein GK. Long-term intraocular toxic effects of topical mitomycin C in rabbits. J Glaucoma. 1996;5:325–33.

    CAS  PubMed  Google Scholar 

  7. Katz GJ, Higginbotham EJ, Lichter PR, Skuta GL, Musch DC, Bergstrom TJ, et al. Mitomycin C versus 5-fluorouracil in high-risk glaucoma filtering surgery. Extended follow-up. Ophthalmology. 1995;102:1263–9.

    CAS  PubMed  Google Scholar 

  8. Prata JA Jr., Seah SK, Minckler DS, Baerveldt G, Lee PP, Heuer DK. Postoperative complications and short-term outcome after 5-Fluorouracil or mitomycin-C trabeculectomy. J Glaucoma. 1995;4:25–31.

    PubMed  Google Scholar 

  9. Wang JM, Hui N, Fan YZ, Xiong L, Sun NX. Filtering bleb area and intraocular pressure following subconjunctival injection of CTGF antibody after glaucoma filtration surgery in rabbits. Int J Ophthalmol. 2011;4:480–3.

    PubMed  PubMed Central  Google Scholar 

  10. Yamanaka O, Saika S, Ikeda K, Miyazaki K, Kitano A, Ohnishi Y. Connective tissue growth factor modulates extracellular matrix production in human subconjunctival fibroblasts and their proliferation and migration in vitro. Jpn J Ophthalmol. 2008;52:8–15.

    CAS  PubMed  Google Scholar 

  11. Lim DH, Kim TE, Kee C. Evaluation of adenovirus-mediated down-regulation of connective tissue growth factor on postoperative wound healing after experimental glaucoma surgery. Curr Eye Res. 2016;41:951–6.

    CAS  PubMed  Google Scholar 

  12. Ledford H. CRISPR, the disruptor. Nature. 2015;522:20–4.

    CAS  PubMed  Google Scholar 

  13. Song L, Llanga T, Conatser LM, Zaric V, Gilger BC, Hirsch ML. Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther. 2018;25:402–14.

    CAS  PubMed  Google Scholar 

  14. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28:92–5.

    CAS  PubMed  Google Scholar 

  15. Pierce EA, Bennett J. The status of RPE65 gene therapy trials: safety and efficacy. Cold Spring Harb Perspect Med. 2015;5:a017285.

    PubMed  PubMed Central  Google Scholar 

  16. Recchia A. AAV-CRISPR persistence in the eye of the beholder. Mol Ther. 2019;27:12–4.

    CAS  PubMed  Google Scholar 

  17. Kee C, Sohn S, Hwang JM. Stromelysin gene transfer into cultured human trabecular cells and rat trabecular meshwork in vivo. Invest Ophthalmol Vis Sci. 2001;42:2856–60.

    CAS  PubMed  Google Scholar 

  18. Cordeiro MF, Constable PH, Alexander RA, Bhattacharya SS, Khaw PT. Effect of varying the mitomycin-C treatment area in glaucoma filtration surgery in the rabbit. Invest Ophthalmol Vis Sci. 1997;38:1639–46.

    CAS  PubMed  Google Scholar 

  19. SooHoo JR, Seibold LK, Laing AE, Kahook MY. Bleb morphology and histology in a rabbit model of glaucoma filtration surgery using Ozurdex(R) or mitomycin-C. Mol Vis. 2012;18:714–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perkins TW, Faha B, Ni M, Kiland JA, Poulsen GL, Antelman D, et al. Adenovirus-mediated gene therapy using human p21WAF-1/Cip-1 to prevent wound healing in a rabbit model of glaucoma filtration surgery. Arch Ophthalmol. 2002;120:941–9.

    CAS  PubMed  Google Scholar 

  21. Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci. 2003;44:3394–401.

    PubMed  Google Scholar 

  22. Schultheiss M, Schnichels S, Konrad EM, Bartz-Schmidt KU, Zahn G, Caldirola P, et al. alpha5beta1-Integrin inhibitor (CLT-28643) effective in rabbit trabeculectomy model. Acta Ophthalmol. 2017;95:e1–e9.

    CAS  PubMed  Google Scholar 

  23. Ma J, Li X, Zhang W, Huang L, Chen M, Xi L, et al. CSM enhances the filtration bleb survival in rabbit model of experimental glaucoma surgery. Curr Eye Res. 2014;39:982–8.

    CAS  PubMed  Google Scholar 

  24. Akman A, Bilezikci B, Kucukerdonmez C, Demirhan B, Aydin P. Suramin modulates wound healing of rabbit conjunctiva after trabeculectomy: comparison with mitomycin C. Curr Eye Res. 2003;26:37–43.

    PubMed  Google Scholar 

  25. Ekinci M, Cagatay HH, Ceylan E, Keles S, Koban Y, Gokce G, et al. Reduction of conjunctival fibrosis after trabeculectomy using topical alpha-lipoic acid in rabbit eyes. J Glaucoma. 2014;23:372–9.

    PubMed  PubMed Central  Google Scholar 

  26. Van Bergen T, Vandewalle E, Van de Veire S, Dewerchin M, Stassen JM, Moons L, et al. The role of different VEGF isoforms in scar formation after glaucoma filtration surgery. Exp Eye Res. 2011;93:689–99.

    PubMed  Google Scholar 

  27. Shi H, Wang H, Fu S, Xu K, Zhang X, Xiao Y, et al. Losartan attenuates scar formation in filtering bleb after trabeculectomy. Invest Ophthalmol Vis Sci. 2017;58:1478–86.

    CAS  PubMed  Google Scholar 

  28. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    PubMed  Google Scholar 

  30. Jiang W, Marraffini LA. CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annu Rev Microbiol. 2015;69:209–28.

    CAS  PubMed  Google Scholar 

  31. Bagheri A, Soheili ZS, Ahmadieh H, Samiei S, Sheibani N, Astaneh SD, et al. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells. Mol Vis. 2015;21:378–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Z, Sun Z, Liu H, Ren Y, Shao D, Zhang W, et al. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis. Mol Med Rep. 2015;12:1091–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sonnylal S, Shi-Wen X, Leoni P, Naff K, Van Pelt CS, Nakamura H, et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 2010;62:1523–32.

    PubMed  Google Scholar 

  34. Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol. 2003;81:355–63.

    CAS  PubMed  Google Scholar 

  35. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5:S24.

    PubMed  PubMed Central  Google Scholar 

  36. Yamamoto K, Morishita R, Tomita N, Shimozato T, Nakagami H, Kikuchi A, et al. Ribozyme oligonucleotides against transforming growth factor-beta inhibited neointimal formation after vascular injury in rat model: potential application of ribozyme strategy to treat cardiovascular disease. Circulation. 2000;102:1308–14.

    CAS  PubMed  Google Scholar 

  37. Stein CA. The experimental use of antisense oligonucleotides: a guide for the perplexed. J Clin Invest. 2001;108:641–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br J Pharmacol. 2013;170:730–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58:575–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23:R40–6.

    CAS  PubMed  Google Scholar 

  41. Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85:227–64.

    CAS  PubMed  Google Scholar 

  42. Reddick R, Merritt JC, Ross G, Avery A, Peiffer RL. Myofibroblasts in filtration operations. Ann Ophthalmol. 1985;17:200–3.

    CAS  PubMed  Google Scholar 

  43. Miller MH, Grierson I, Unger WI, Hitchings RA. Wound healing in an animal model of glaucoma fistulizing surgery in the rabbit. Ophthalmic Surg. 1989;20:350–7.

    CAS  PubMed  Google Scholar 

  44. Joseph JP, Miller MH, Hitchings RA. Wound healing as a barrier to successful filtration surgery. Eye (Lond). 1988;2:S113–23.

    PubMed  Google Scholar 

  45. Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003;48:314–46.

    PubMed  Google Scholar 

  46. Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283:1218–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01056574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwon Kee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E.J., Han, J.C., Park, D.Y. et al. Effect of connective tissue growth factor gene editing using adeno-associated virus–mediated CRISPR–Cas9 on rabbit glaucoma filtering surgery outcomes. Gene Ther 28, 277–286 (2021). https://doi.org/10.1038/s41434-020-0166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0166-4

Search

Quick links