Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Retinal gene therapy: an eye-opener of the 21st century

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutation-independent combination gene therapy.

References

  1. High KA, Roncarolo MG. Gene therapy. N Engl J Med. 2019;381:455–64.

    CAS  PubMed  Google Scholar 

  2. Trapani I, Auricchio A. Seeing the light after 25 years of retinal gene therapy. Trends Mol Med. 2018;24:669–81.

    PubMed  Google Scholar 

  3. Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, WeiYang Yu C, et al. Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2019:100827. [Online ahead of print].

  4. Trapani I, Auricchio A. Has retinal gene therapy come of age? From bench to bedside and back to bench. Hum Mol Genet. 2019;28:R108–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Drack AV, Bennett J, Russel S, High KA, Yu ZF, Tillman A, et al. How long does gene therapy last? 4 Year follow-up of phase 3 voretigene neparvo-vec trial in RPE65-associated LCA/inherited retinal disease. Presented at the American Association for Pediatric Ophthalmology and Strabismus 45th Annual Meeting, San Diego, CA; 2019.

  7. Dimopoulos IS, Hoang SC, Radziwon A, Binczyk NM, Seabra MC, MacLaren RE, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am J Ophthalmol. 2018;193:130–42.

    PubMed  Google Scholar 

  8. Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther. 2018;18:37–49.

    CAS  PubMed  Google Scholar 

  9. Vignal C, Uretsky S, Fitoussi S, Galy A, Blouin L, Girmens JF, et al. Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology. 2018;125:945–7.

    PubMed  Google Scholar 

  10. Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135:327–43.

    CAS  PubMed  Google Scholar 

  11. Xue K, Jolly JK, Barnard AR, Rudenko A, Salvetti AP, Patricio MI, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24:1507–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lam BL, Davis JL, Gregori NZ, MacLaren RE, Girach A, Verriotto JD, et al. Choroideremia gene therapy phase 2 clinical trial: 24-month results. Am J Ophthalmol. 2019;197:65–73.

    CAS  PubMed  Google Scholar 

  13. Simunovic MP, Xue K, Jolly JK, MacLaren RE. Structural and functional recovery following limited iatrogenic macular detachment for retinal gene therapy. JAMA Ophthalmol. 2017;135:234–41.

    PubMed  Google Scholar 

  14. Edwards TL, Xue K, Meenink HCM, Beelen MJ, Naus GJL, Simunovic MP, et al. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng. 2018;2:649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Campochiaro PA, Mir TA. The mechanism of cone cell death in Retinitis Pigmentosa. Prog Retin Eye Res. 2018;62:24–37.

    CAS  PubMed  Google Scholar 

  16. Lang M, Harris A, Ciulla TA, Siesky B, Patel P, Belamkar A, et al. Vascular dysfunction in retinitis pigmentosa. Acta Ophthalmol. 2019;97:660–4.

    PubMed  Google Scholar 

  17. Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;126:1273–85.

    PubMed  Google Scholar 

  19. Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887–97.

    PubMed  PubMed Central  Google Scholar 

  20. Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015;372:1920–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Katada Y, Kobayashi K, Tsubota K, Kurihara T. Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ. 2019;7:e6317.

    PubMed  PubMed Central  Google Scholar 

  22. Khabou H, Desrosiers M, Winckler C, Fouquet S, Auregan G, Bemelmans AP, et al. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant—7m8. Biotechnol Bioeng. 2016;113:2712–24.

    CAS  PubMed  Google Scholar 

  23. Zeng Y, Qian H, Wu Z, Marangoni D, Sieving PA, Bush RA. AAVrh-10 transduces outer retinal cells in rodents and rabbits following intravitreal administration. Gene Ther. 2019;26:386–98.

    CAS  PubMed  Google Scholar 

  24. Weed L, Ammar MJ, Zhou S, Wei Z, Serrano LW, Sun J, et al. Safety of same-eye subretinal sequential readministration of AAV2-hRPE65v2 in non-human primates. Mol Ther Methods Clin Dev. 2019;15:133–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang S, Ma SQ, Wan X, He H, Pei H, Zhao MJ, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine. 2016;10:258–68.

    PubMed  PubMed Central  Google Scholar 

  26. Cukras C, Wiley HE, Jeffrey BG, Sen HN, Turriff A, Zeng Y, et al. Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase I/IIa trial by intravitreal delivery. Mol Ther. 2018;26:2282–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology. 2008;381:194–202.

    CAS  PubMed  Google Scholar 

  28. Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet. 2017;390:50–61.

    CAS  PubMed  Google Scholar 

  30. Corydon TJ. Antiangiogenic eye gene therapy. Hum Gene Ther. 2015;26:525–37.

    CAS  PubMed  Google Scholar 

  31. Rakoczy EP, Magno AL, Lai CM, Pierce CM, Degli-Esposti MA, Blumenkranz MS, et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. Am J Ophthalmol. 2019;204:113–23.

    PubMed  Google Scholar 

  32. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109:E2579–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25:229–33.

    CAS  PubMed  Google Scholar 

  36. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550:407–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481–5.

    PubMed  PubMed Central  Google Scholar 

  40. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84–8.

    CAS  PubMed  Google Scholar 

  41. Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, et al. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat Commun. 2019;10:4284.

    PubMed  PubMed Central  Google Scholar 

  42. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 2017;27:419–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikkelsen JG. Viral delivery of genome-modifying proteins for cellular reprogramming. Curr Opin Genet Dev. 2018;52:92–9.

    CAS  PubMed  Google Scholar 

  44. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE. Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods. 2014;25:166–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. McClements ME, Barnard AR, Singh MS, Charbel Issa P, Jiang Z, Radu RA, et al. An AAV dual vector strategy ameliorates the stargardt phenotype in adult Abca4(−/−) mice. Hum Gene Ther. 2019;30:590–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Trapani I, Colella P, Sommella A, Iodice C, Cesi G, de Simone S, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 2014;6:194–211.

    CAS  PubMed  Google Scholar 

  49. Binley K, Widdowson P, Loader J, Kelleher M, Iqball S, Ferrige G, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Investig Ophthalmol Vis Sci. 2013;54:4061–71.

    CAS  Google Scholar 

  50. Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, et al. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018;9:1007.

    PubMed  PubMed Central  Google Scholar 

  51. Biswal MR, Han P, Zhu P, Wang Z, Li H, Ildefonso CJ, et al. Timing of antioxidant gene therapy: implications for treating dry AMD. Investig Ophthalmol Vis Sci. 2017;58:1237–45.

    CAS  Google Scholar 

  52. Bainbridge JW, Tan MH, Ali RR. Gene therapy progress and prospects: the eye. Gene Ther. 2006;13:1191–7.

    CAS  PubMed  Google Scholar 

  53. Askou AL, Alsing S, Benckendorff JNE, Holmgaard A, Mikkelsen JG, Aagaard L, et al. Suppression of choroidal neovascularization by AAV-based dual-acting antiangiogenic gene therapy. Mol Ther Nucleic Acids. 2019;16:38–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, et al. Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic MicroRNAs. Hum Gene Ther Methods. 2017;28:222–33.

    CAS  PubMed  Google Scholar 

  55. Davidsohn N, Pezzone M, Vernet A, Graveline A, Oliver D, Slomovic S, et al. A single combination gene therapy treats multiple age-related diseases. Proc Natl Acad Sci USA. 2019;116:23505–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jolly JK, Bridge H, MacLaren RE. Outcome measures used in ocular gene therapy trials: a scoping review of current practice. Front Pharmacol. 2019;10:1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lahteenvuo J, Yla-Herttuala S. Advances and challenges in cardiovascular gene therapy. Hum Gene Ther. 2017;28:1024–32.

    PubMed  Google Scholar 

  58. Hasler PW, Bloch SB, Villumsen J, Fuchs J, Lund-Andersen H, Larsen M. Safety study of 38,503 intravitreal ranibizumab injections performed mainly by physicians in training and nurses in a hospital setting. Acta Ophthalmol. 2015;93:122–5.

    CAS  PubMed  Google Scholar 

  59. White W. A rare disease patient/caregiver perspective on fair pricing and access to gene-based therapies. Gene Ther. 2019. https://doi.org/10.1038/s41434-019-0110-7.

  60. Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG, Ash JD, et al. Inherited retinal degenerations: current landscape and knowledge gaps. Transl Vis Sci Technol. 2018;7:6.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty of Health Sciences, the Danish Eye Research Foundation (TJC), Aase and Ejnar Danielsen’s Foundation (TJC), and the Velux Foundation (ALA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Corydon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askou, A.L., Jakobsen, T.S. & Corydon, T.J. Retinal gene therapy: an eye-opener of the 21st century. Gene Ther 28, 209–216 (2021). https://doi.org/10.1038/s41434-020-0168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0168-2

This article is cited by

Search

Quick links