Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons

A Comment to this article was published on 20 January 2022

Abstract

There are no effective cures for upper motor neuron (UMN) diseases, such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and hereditary spastic paraplegia. Here, we show UMN loss occurs independent of spinal motor neuron degeneration and that UMNs are indeed effective cellular targets for gene therapy, which offers a potential solution especially for UMN disease patients. UCHL1 (ubiquitin C-terminal hydrolase-L1) is a deubiquitinating enzyme crucial for maintaining free ubiquitin levels. Corticospinal motor neurons (CSMN, a.k.a UMNs in mice) show early, selective, and profound degeneration in Uchl1nm3419 (UCHL1−/−) mice, which lack all UCHL1 function. When UCHL1 activity is ablated only from spinal motor neurons, CSMN remained intact. However, restoring UCHL1 specifically in CSMN of UCHL1−/− mice via directed gene delivery was sufficient to improve CSMN integrity to the healthy control levels. In addition, when UCHL1 gene was delivered selectively to CSMN that are diseased due to misfolded SOD1 toxicity and TDP-43 pathology via AAV-mediated retrograde transduction, the disease causing misfolded SOD1 and mutant human TDP-43 were reduced in hSOD1G93A and prpTDP-43A315T models, respectively. Diseased CSMN retained their neuronal integrity and cytoarchitectural stability in two different mouse models that represent two distinct causes of neurodegeneration in ALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UCHL1 expression can be deleted using cre/lox conditional mutant approach in the CSMN of floxed UCHL1 mice.
Fig. 2: HB9cre UCHL1f/f mice lack UCHL1 in their spinal motor neurons.
Fig. 3: Cortex specific UCHL1 conditional mutant mice recapitulate pathology observed in the CSMN of UCHL1−/− mice.
Fig. 4: Spine density is reduced in degenerating and vacuolated apical dendrites of CSMN.
Fig. 5: UCHL1 expression can be restored in CSMN of UCHL1−/− mice using a AAV2-UCHL1-IRES-eGFP bicistronic expression vector.
Fig. 6: Restoration of UCHL1 expression in only CSMN of UCHL1−/− mice is sufficient to improve their health and cytoarchitectural integrity.
Fig. 7: Expression of UCHL1 in CSMN of hSOD1G93A mice is sufficient to improve their health and cytoarchitectural integrity.
Fig. 8: Expression of UCHL1 in CSMN of prpTDP-43A315T mice is sufficient to improve their health and cytoarchitectural integrity.
Fig. 9: UCHL1 expression reduces both the levels of misfolded SOD1 and human TDP-43A315T.

Similar content being viewed by others

References

  1. Geevasinga N, Menon P, Ozdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol. 2016;12:651–61.

    Article  CAS  PubMed  Google Scholar 

  2. Jara JH, Genc B, Klessner JL, Ozdinler PH. Retrograde labeling, transduction, and genetic targeting allow cellular analysis of corticospinal motor neurons: implications in health and disease. Front Neuroanat. 2014;8:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195–218.

    Article  CAS  PubMed  Google Scholar 

  4. Brunet A, Stuart-Lopez G, Burg T, Scekic-Zahirovic J, Rouaux C. Cortical circuit dysfunction as a potential driver of amyotrophic lateral sclerosis. Front Neurosci. 2020;14:363.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McColgan P, Joubert J, Tabrizi SJ, Rees G. The human motor cortex microcircuit: insights for neurodegenerative disease. Nature Rev Neurosci. 2020;21:401–15.

    Article  CAS  Google Scholar 

  6. Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting complexity: the role of motor circuit elements in ALS pathophysiology. Front Neurosci. 2020;14:573.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126:307–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fink JK. Progressive spastic paraparesis: hereditary spastic paraplegia and its relation to primary and amyotrophic lateral sclerosis. Semin Neurol. 2001;21:199–207.

    Article  CAS  PubMed  Google Scholar 

  9. Genc B, Jara JH, Lagrimas AK, Pytel P, Roos RP, Mesulam MM, et al. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci Rep. 2017;7:41765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Udaka F, Kameyama M, Tomonaga M. Degeneration of Betz cells in motor neuron disease. A Golgi study. Acta Neuropathol. 1986;70:289–95.

    Article  CAS  PubMed  Google Scholar 

  11. Brown RH Jr, Robberecht W. Amyotrophic lateral sclerosis: pathogenesis. Semin Neurol. 2001;21:131–9.

    Article  PubMed  Google Scholar 

  12. Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343:506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemon RN. The cortical “upper motoneuron” in health and disease. Brain Sci. 2021;11:619–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chou SM, Norris FH. Amyotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve. 1993;16:864–9.

    Article  CAS  PubMed  Google Scholar 

  15. Dadon-Nachum M, Melamed E, Offen D. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci. 2011;43:470–7.

    Article  CAS  PubMed  Google Scholar 

  16. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185:232–40.

    Article  PubMed  Google Scholar 

  17. Eisen A. The dying forward hypothesis of ALS: tracing its history. Brain Sci. 2021;11:300–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eisen A, Kim S, Pant B. Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve. 1992;15:219–24.

    Article  CAS  PubMed  Google Scholar 

  19. Baker MR. ALS-dying forward, backward or outward? Nat Rev Neurol. 2014;10:660.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Piotrkiewicz M, Hausmanowa-Petrusewicz I. Amyotrophic lateral sclerosis: a dying motor unit. Front Aging Neurosci. 2013;5:7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wainger BJ, Brown RH Jr. Amyotrophic lateral sclerosis: fuel for the corticofugal feud. Ann Neurol. 2020;88:682–4.

    Article  PubMed  Google Scholar 

  22. Eisen A, Weber M. The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve. 2001;24:564–73.

    Article  CAS  PubMed  Google Scholar 

  23. Vucic S, Cheah BC, Kiernan MC. Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp Neurol. 2009;220:177–82.

    Article  PubMed  Google Scholar 

  24. Vucic S, Cheah BC, Yiannikas C, Kiernan MC. Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol. 2011;122:1860–6.

    Article  PubMed  Google Scholar 

  25. Geevasinga N, Howells J, Menon P, van den Bos M, Shibuya K, Matamala JM, et al. Amyotrophic lateral sclerosis diagnostic index: toward a personalized diagnosis of ALS. Neurology. 2019;92:e536–e47.

    Article  PubMed  Google Scholar 

  26. Lacomis D, Gooch C. Upper motor neuron assessment and early diagnosis in ALS: getting it right the first time. Neurology. 2019;92:255–6.

    Article  PubMed  Google Scholar 

  27. Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain. 2008;131(Pt 6):1540–50.

    Article  PubMed  Google Scholar 

  28. Thomsen GM, Gowing G, Latter J, Chen M, Vit JP, Staggenborg K, et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci. 2014;34:15587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomsen GM, Avalos P, Ma AA, Alkaslasi M, Cho N, Wyss L, et al. Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis. Stem Cells. 2018;36:1122–31.

    Article  CAS  PubMed  Google Scholar 

  30. Scekic-Zahirovic J, Fischer M, Stuart-Lopez G, Burg T, Gilet J, Dirrig-Grosch S, et al. Evidence that corticofugal propagation of ALS pathology is not mediated by prion-like mechanism. Prog Neurobiol. 2021;200:101972.

    Article  CAS  PubMed  Google Scholar 

  31. Burg T, Bichara C, Scekic-Zahirovic J, Fischer M, Stuart-Lopez G, Brunet A, et al. Absence of subcerebral projection neurons is beneficial in a mouse model of amyotrophic lateral sclerosis. Ann Neurol. 2020;88:688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry. 2013;84:1161–70.

    Article  PubMed  Google Scholar 

  33. Menon P, Geevasinga N, Yiannikas C, Howells J, Kiernan MC, Vucic S. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol. 2015;14:478–84.

    Article  PubMed  Google Scholar 

  34. Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol. 2021;17:104–18.

    Article  PubMed  Google Scholar 

  35. Geevasinga N, Menon P, Sue CM, Kumar KR, Ng K, Yiannikas C, et al. Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol. 2015;22:826–31. e57-8

    Article  CAS  PubMed  Google Scholar 

  36. Day IN, Thompson RJ. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 2010;90:327–62.

    Article  CAS  PubMed  Google Scholar 

  37. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J. 2016;473:2453–62.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell. 2002;111:209–18.

    Article  CAS  PubMed  Google Scholar 

  39. Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc Natl Acad Sci USA. 2013;110:3489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Das Bhowmik A, Patil SJ, Deshpande DV, Bhat V, Dalal A. Novel splice-site variant of UCHL1 in an Indian family with autosomal recessive spastic paraplegia-79. J Hum Genet. 2018;63:927–33.

    Article  CAS  PubMed  Google Scholar 

  41. Rydning SL, Backe PH, Sousa MML, Iqbal Z, Oye AM, Sheng Y, et al. Novel UCHL1 mutations reveal new insights into ubiquitin processing. Hum Mol Genet. 2017;26:1217–8.

    Article  CAS  PubMed  Google Scholar 

  42. Blackstone C. Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol. 2018;51:139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McMacken G, Lochmuller H, Bansagi B, Pyle A, Lochmuller A, Chinnery PF, et al. Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion. J Neurol. 2020;267:3643–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walters BJ, Campbell SL, Chen PC, Taylor AP, Schroeder DG, Dobrunz LE, et al. Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol Cell Neurosci. 2008;39:539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jara JH, Genc B, Cox GA, Bohn MC, Roos RP, Macklis JD, et al. Corticospinal motor neurons are susceptible to increased ER stress and display profound degeneration in the absence of UCHL1 function. Cereb Cortex. 2015;25:4259–72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Genc B, Jara JH, Schultz MC, Manuel M, Stanford MJ, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ozdinler PH, Benn S, Yamamoto TH, Guzel M, Brown RH Jr, Macklis JD. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G(9)(3)A transgenic ALS mice. J Neurosci. 2011;31:4166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yasvoina MV, Genc B, Jara JH, Sheets PL, Quinlan KA, Milosevic A, et al. eGFP expression under UCHL1 promoter genetically labels corticospinal motor neurons and a subpopulation of degeneration-resistant spinal motor neurons in an ALS mouse model. J Neurosci. 2013;33:7890–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Genc B, Gozutok O, Kocak N, Ozdinler PH. The timing and extent of motor neuron vulnerability in ALS correlates with accumulation of misfolded SOD1 protein in the cortex and in the spinal cord. Cells. 2020;9:502–16.

  50. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–5.

    Article  CAS  PubMed  Google Scholar 

  51. Gautam M, Jara JH, Kocak N, Rylaarsdam LE, Kim KD, Bigio EH, et al. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol. 2019;137:47–69.

    Article  CAS  PubMed  Google Scholar 

  52. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009;106:18809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gautam M, Jara JH, Sekerkova G, Yasvoina MV, Martina M, Ozdinler PH. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms. Hum Mol Genet. 2016;25:1074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A, et al. Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet. 2017;26:686–701.

    CAS  PubMed  Google Scholar 

  55. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427–34.

    Article  CAS  PubMed  Google Scholar 

  56. Robertson J, Sanelli T, Xiao S, Yang W, Horne P, Hammond R, et al. Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS. Neurosci Lett. 2007;420:128–32.

    Article  CAS  PubMed  Google Scholar 

  57. Maekawa S, Leigh PN, King A, Jones E, Steele JC, Bodi I, et al. TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology. 2009;29:672–83.

    Article  PubMed  Google Scholar 

  58. Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Archiv Neurol. 2007;64:1388–94.

    Article  Google Scholar 

  59. Genc B, Gautam M, Gozutok O, Dervishi I, Sanchez S, Goshu GM, et al. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med. 2021;11:e336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gerfen CR, Paletzki R, Heintz N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 2013;80:1368–83.

    Article  CAS  PubMed  Google Scholar 

  61. Kim J, Hughes EG, Shetty AS, Arlotta P, Goff LA, Bergles DE, et al. Changes in the excitability of neocortical neurons in a mouse model of amyotrophic lateral sclerosis are not specific to corticospinal neurons and are modulated by advancing disease. J Neurosci. 2017;37:9037–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leone DP, Heavner WE, Ferenczi EA, Dobreva G, Huguenard JR, Grosschedl R, et al. Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex. Cereb Cortex. 2015;25:3406–19.

    Article  PubMed  Google Scholar 

  63. Woodworth MB, Greig LC, Liu KX, Ippolito GC, Tucker HO, Macklis JD. Ctip1 regulates the balance between specification of distinct projection neuron subtypes in deep cortical layers. Cell Rep. 2016;15:999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci. 2007;27:9817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425:917–25.

    Article  CAS  PubMed  Google Scholar 

  66. Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron. 2001;30:399–410.

    Article  CAS  PubMed  Google Scholar 

  67. Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron. 1999;23:659–74.

    Article  CAS  PubMed  Google Scholar 

  68. Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther. 2010;21:1259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu Y, Xu J, Hauswirth WW, DeVries SH. Genetically targeted binary labeling of retinal neurons. J Neurosci. 2014;34:7845–61.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jara JH, Villa SR, Khan NA, Bohn MC, Ozdinler PH. AAV2 mediated retrograde transduction of corticospinal motor neurons reveals initial and selective apical dendrite degeneration in ALS. Neurobiol Dis. 2012;47:174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gros-Louis F, Soucy G, Lariviere R, Julien JP. Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem. 2010;113:1188–99.

    CAS  PubMed  Google Scholar 

  72. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–97.

    Article  CAS  PubMed  Google Scholar 

  73. Wilson JM, Hartley R, Maxwell DJ, Todd AJ, Lieberam I, Kaltschmidt JA, et al. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J Neurosci. 2005;25:5710–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kramer ER, Knott L, Su F, Dessaud E, Krull CE, Helmbacher F, et al. Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron. 2006;50:35–47.

    Article  CAS  PubMed  Google Scholar 

  75. Gogliotti RG, Quinlan KA, Barlow CB, Heier CR, Heckman CJ, Didonato CJ. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci. 2012;32:3818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007;8:427–37.

    Article  CAS  PubMed  Google Scholar 

  77. Molyneaux BJ, Arlotta P, Macklis JD. Molecular development of corticospinal motor neuron circuitry. Novartis Found Symp. 2007;288:3–15. Discussion-20, 96-8.

    CAS  PubMed  Google Scholar 

  78. Fogarty MJ. Driven to decay: excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull. 2018;140:318–33.

    Article  CAS  PubMed  Google Scholar 

  79. Fogarty MJ. Amyotrophic lateral sclerosis as a synaptopathy. Neural Regen Res. 2019;14:189–92.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fogarty MJ, Klenowski PM, Lee JD, Drieberg-Thompson JR, Bartlett SE, Ngo ST, et al. Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis. Sci Rep. 2016;6:37968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fogarty MJ, Mu EW, Noakes PG, Lavidis NA, Bellingham MC. Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2016;4:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fogarty MJ, Noakes PG, Bellingham MC. Motor cortex layer V pyramidal neurons exhibit dendritic regression, spine loss, and increased synaptic excitation in the presymptomatic hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Neurosci. 2015;35:643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Handley EE, Pitman KA, Dawkins E, Young KM, Clark RM, Jiang TC, et al. Synapse Dysfunction of layer V pyramidal neurons precedes neurodegeneration in a mouse model of TDP-43 proteinopathies. Cereb Cortex. 2017;27:3630–47.

    PubMed  Google Scholar 

  84. Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79:416–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cykowski MD, Powell SZ, Peterson LE, Appel JW, Rivera AL, Takei H, et al. Clinical significance of TDP-43 neuropathology in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2017;76:402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gautam M, Xie EF, Kocak N, Ozdinler PH. Mitoautophagy: a unique self-destructive path mitochondria of upper motor neurons with TDP-43 pathology take, very early in ALS. Front Cell Neurosci. 2019;13:489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  CAS  PubMed  Google Scholar 

  88. Reinicke AT, Laban K, Sachs M, Kraus V, Walden M, Damme M, et al. Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proc Natl Acad Sci USA. 2019;116:7963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bachiller S, Alonso-Bellido IM, Real LM, Perez-Villegas EM, Venero JL, Deierborg T, et al. The Ubiquitin proteasome system in neuromuscular disorders: moving beyond movement. Int J Mol Sci. 2020;21:6429–49.

  90. Coan G, Mitchell CS. An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. Neuro-degener Dis. 2015;15:301–12.

    Article  CAS  Google Scholar 

  91. Dervishi I, Gozutok O, Murnan K, Gautam M, Heller D, Bigio E, et al. Protein-protein interactions reveal key canonical pathways, upstream regulators, interactome domains, and novel targets in ALS. Sci Rep. 2018;8:14732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2018;17:660–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Turker F, Cook EK, Margolis SS. The proteasome and its role in the nervous system. Cell Chem Biol. 2021;28:903–17.

    Article  CAS  PubMed  Google Scholar 

  94. Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J. 2021;40:e106389.

    Article  CAS  PubMed  Google Scholar 

  95. Graham SH, Liu H. Life and death in the trash heap: the ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res Rev. 2017;34:30–8.

    Article  CAS  PubMed  Google Scholar 

  96. Jara JH, Frank DD, Ozdinler PH. Could dysregulation of UPS be a common underlying mechanism for cancer and neurodegeneration? Lessons from UCHL1. Cell Biochem Biophys. 2013;67:45–53.

    Article  CAS  PubMed  Google Scholar 

  97. Anderson CT, Sheets PL, Kiritani T, Shepherd GM. Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nature Neurosci. 2010;13:739–44.

    Article  CAS  PubMed  Google Scholar 

  98. Shepherd GM. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci. 2013;14:278–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jara JH, Genc B, Stanford MJ, Pytel P, Roos RP, Weintraub S, et al. Evidence for an early innate immune response in the motor cortex of ALS. J Neuroinflammation. 2017;14:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu H, Rose ME, Ma X, Culver S, Dixon CE, Graham SH. In vivo transduction of neurons with TAT-UCH-L1 protects brain against controlled cortical impact injury. PLoS ONE. 2017;12:e0178049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu H, Li W, Ahmad M, Miller TM, Rose ME, Poloyac SM, et al. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury. Neurobiol Dis. 2011;41:318–28.

    Article  CAS  PubMed  Google Scholar 

  102. Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, et al. Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell. 2006;126:775–88.

    Article  CAS  PubMed  Google Scholar 

  103. Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, et al. Beta-Amyloid (Abeta) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem. 2013;288:16937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank UPenn Viral Vector Core, Bill Goosens, and Jolanta Topczewska microscopy at the Stanley Manne Research Institute Lurie Children’s Microscopy and Imaging Facility for help with the confocal microscope.

Funding

This work was supported by grants from NIH-R01NS085161-01 (to P.H.O.), NUCATS (to P.H.O.), and in part by Mitsubishi Tanabe Pharma Holdings America, Inc. (to P.H.O.). The Northwestern University Transgenic and Targeted Mutagenesis Laboratory are partially supported by NIH grant CA60553 to the Robert H. Lurie Comprehensive Cancer Center at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

J.H.J., B.G., S.S.S., A.K.B.L., O.G., N.K., and P.H.O. performed experiments. J.H.J., B.G., S.S.S., and P.H.O. analyzed data, and J.H.J., B.G., and P.H.O. contributed to the writing of this manuscript.

Corresponding author

Correspondence to P. Hande Özdinler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genç, B., Jara, J.H., Sanchez, S.S. et al. Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Ther 29, 178–192 (2022). https://doi.org/10.1038/s41434-021-00303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00303-4

This article is cited by

Search

Quick links