
REVIEW ARTICLE OPEN

Immunogenic cell death and its therapeutic or prognostic
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Immunogenic cell death (ICD) has emerged as a key component of therapy-induced anti-tumor immunity. Over the past few years,
ICD was found to play a pivotal role in a wide variety of novel and existing treatment modalities. The clinical application of these
techniques in cancer treatment is still in its infancy. Glioblastoma (GBM) is the most lethal primary brain tumor with a dismal
prognosis despite maximal therapy. The development of new therapies in this aggressive type of tumors remains highly
challenging partially due to the cold tumor immune environment. GBM could therefore benefit from ICD-based therapies
stimulating the anti-tumor immune response. In what follows, we will describe the mechanisms behind ICD and the ICD-based (pre)
clinical advances in anticancer therapies focusing on GBM.
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INTRODUCTION
Entering the era of immunotherapy, newly-discovered mechan-
isms breaking the barrier between immunity and cancer have
opened the door for novel treatment paradigms. With evidence
from several clinical trials, immune checkpoint inhibitors (ICI) have
provided promising outcome in certain types of cancers [1–7].
However, immune checkpoint inhibitors only show their effec-
tiveness conditionally within specific biomarker-identified sub-
groups of patients [8, 9]. Immunogenic cell death (ICD), discovered
in the recent decades, has shed a different light on the relevance
of the dialogue established between dying cancer cells and the
immune system in cancer therapy [10]. ICD, named after the
immunogenicity of dying/dead cancer cells, is a form of regulated
cell death (RCD) induced by certain types of therapies. It is able to
potentiate adaptive immune responses, targeting residual cancer
cells/tissues, through the emission of endogenous molecules that
acquire potent immunomodulatory functions when exposed to
the extracellular environment, known as damage associated
molecular patterns (DAMPs) [11]. Within the process of ICD,
specifically associated to apoptotic cell death, the concomitant
induction of ROS production [12] and ER stress [13] activate
danger signaling, which will lead to the emission of ICD-associated
DAMPs in a spatio-temporal manner [14, 15]. Altogether the
release of these immunomodulatory molecules, by binding to
cognate pattern recognition receptors on the surface of antigen-
presenting cells will function as adjuvants to promote their
chemotaxis and maturation, which together with the uptake of
tumor antigens from dying/dead cells, will culminate in the

activation of adaptive immune responses. The ability to activate
danger signaling pathways unleashing the proinflammatory/
immunomodulatory potential of DAMPs, is therefore considered
the dominant process distinguishing ICD from tolerogenic cell
death [16].
ICD is rapidly gaining popularity in the field of anti-cancer

therapy. Some conventional treatments have shown to be able to
induce some form of ICD [17], and currently, new ICD inducers are
under screening [18, 19]. Besides, some ICD inducers can function
in synergy with other types of immunotherapy, such as immune
checkpoint inhibitors therapy [20] to enhance their effectiveness.

Main molecular and immunological features of ICD
To induce cell death with increased immunogenicity, an ICD
inducer is necessary in the first place [19–27]. Known therapeutic
treatments associated with ICD comprise a variety of cellular
stressors, including (but not limited to) conventional chemothera-
pies (e.g. various anthracyclines), proteasomal inhibitors, oncolytic
viruses, and physicochemical/physical stressors such as radio-
therapy, photodynamic therapy (PDT), high-hydrostatic pressure
[28]. However, with the screening of conventional anti-cancer
therapy and the discovery of novel medications for their potential
ability to induce ICD, the collection of drugs or treatments
associated with a stress-induced RCD with inflammatory and
immunogenic features, continues to increase. Based on the
molecular knowledge of the signaling pathway triggered by
drugs or treatments eliciting cellular stress-associated to ICD, ICD
inducers can be classified into two main categories, designated as
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type I and type II. Type I ICD inducers are typified by genotoxic
drugs, like anthracyclines, causing the activation of the unfolded
protein response and reactive oxygen species production [12] as
secondary or collateral cytoplasmic processes evoked in response
to damage to their main intracellular target (i.e. DNA). Different
from these agents, type II inducers, such as hypericin-mediated
PDT, cause ER-focused reactive oxygen species formation, thereby
prompting loss of ER homeostasis, intracellular Ca2+ elevation and
fast danger signaling pathways eliciting the exposure and release
of DAMPs [29–31]. As a result, type II ICD inducers are usually more
robust than type I inducers in terms of ICD propensity.
The ER chaperone calreticulin (CRT), is usually translocated from

the ER to the plasma membrane during the early phase of ICD as
the response of ER stress. The mobilization of CRT to the PM
during the early phase of apoptosis has been shown to require
loss of the ER-Ca+ store, BAX/BAK, the recruitment of caspase-8,
and PERK which partaking the process of unfolded protein
response [14]. Depending on the type of ICD, either eIF2a the
downstream effector of PERK or likely PERK-scaffolding function,
has been found to be crucial for CRT trafficking to the plasma
membrane [32]. Once exposed at the surface CRT acts as potent
‘eat-me’’ signal, by binding to CRT cognate receptor on antigen-
presenting cells, and facilitates the engulfment of dying cells by
DCs. Clinical studies have shown that, in human non-small cell
lung cancers, the expression level of CRT is also positively
correlated with accumulation of matured DCs and the survival
of patients [33]. In neuroblastoma, expression of CRT can be used
as an independent prognostic factor [34], suggesting the
biomarker potential of CRT.
Adenosine triphosphate (ATP), is secreted during a pre-mortem

phase of ICD. During ICD, ATP secreted by stressed cells, by
binding to purinergic receptors (P2RY2 and P2RX7) on the surface
of DCs, acts as ‘find-me’’ signal to recruit DCs to the site of dying
cancer cells and stimulates the assembly and activation of the
inflammasome, leading to the production and secretion of
interleukin (IL)-1β [35] by DCs. The pathway causing ATP release
from stressed cancer cells is, however, dependent on the type of
ICD inducers. Autophagy has been shown to be either required for
ATP release in response to anthracyclines, or be dispensable in
case of Hypericin-PDT [31]. In the last settings, autophagy
induction after Hypericin-PDT by eliminating oxidatively damaged
proteins, attenuated ER stress, and the exposure of CRT [31]. In
contrast, Prieto et al. showed that in response to P2Et extract from
the plant Caesalpinia spinosa, autophagy occurs before apoptotic
cellular demise to promote ecto-CRT [36] and further immune
response will be elicited during the progression of ICD [31]. Hence
the role of autophagy in ICD remains highly context-dependent.
In the post-demise phase of ICD, nuclear HMGB1 is relocated to

the cytoplasm and will be exposed extracellularly upon plasma
membrane rupture. This passive released HMGB1, during the later
stage of apoptosis and secondary necrosis, stimulates tumor
antigen presentation DC maturation by binding toll-like
receptor 4.
Besides these DAMPs which have an intracellular housekeeping

function, other danger molecules can be transcriptionally induced
during ICD. For example, certain type of ICD inducers, triggers type
I interferon (IFN) responses and the secretion of several
chemokines [37] with a pronounced immunomodulatory role. It
is thought that stimulation of type I IFN activity is one of the
reasons why ICD can function synergistic with anti-PD1 therapy
[38]. For example, radiotherapy induction of type I IFN can
overcome the resistance of anti-PD1 [39]. On the other hand, since
persistent type I IFN response will lead to immunosuppression
only ICD inducers that cause transient type I IFN release may
possess the beneficial effect of stimulating anti-tumor immunity.
In line with this, dinaciclib, a cyclin-dependent kinases inhibitor
that can induce a proper amount of type I IFN release in a timely
manner, alleviates the resistance to checkpoint-blockade

treatment [20, 40]. Intriguingly, a recent study shows that
transcriptional pro-inflammatory signature is shared by both
anthracyclines and Hypericin-PDT, and distinguishes ICD from
non-ICD (e.g. Cisplatin) regimens. This ICD-associated response,
which is driven by the activation of NF-kB and AP-1 transcritption
factors coordinated by heat shock protein 60 [37] is critical for the
anticancer vaccination potential of ICD-inducing chemotherapy.
However, it should be noticed that both ICD-associated DAMPs

and various cytokines and chemokines induced by ICD can have
profound and sometimes contrasting impact on the TME. Surface
exposed calreticulin for example promotes tumor antigen
presentation by facilitating DC phagocytosis, but can also promote
cancer cell invasion [41]. HGMB1 stimulates DC maturation,
however, its immunomodulatory activity is dependent on its
oxidation status [42] and its role is tumor and TME specific [43].
Extracellular ATP acts as a chemoattractant for immature DCs but
can be converted into an immunosuppressive form (adenosine) by
CD39 (ecto-nucleoside triphosphate diphosphohydrolase 1) and
CD73 (ecto-5’-nucleotidase). CD39 performs the first step convert-
ing ATP into AMP and CD73 further converts it into adenosine.
Furthermore, both enzymes regulate the magnitude of the
purinergic reaction surrounding the immune cells. High expres-
sion of CD73 is therefore associated with low levels of
lymphocytes in the TME and poor prognosis in for example
colorectal, prostate, and triple-negative breast cancer [44–47]. Of
note, CD73 is regulated by HIF-1alpha and therefore more
abundant in a hypoxic microenvironment [48]. Finally, ICD may
exert several effects on the TME [49]. Phagocytosis of ICD-dying
tumor cells by DC will elicit full DC maturation, and release of
immunogenic cytokines (e.g., IL-6, IL-2,…), which in turn will
promote differentiation and proliferation of CD4+ and CD8+ T
lymphocytes and thus ameliorate the adaptive immune response.
Tumoral DCs are therefore associated with a more favorable
prognosis [33]. Apart from that, as mentioned above, various
anticancer regimens may cause the secretion of type I IFN by
dying cancer cells which will further favor T lymphocyte
recruitment and the establishment of a strong adaptive anticancer
immunity. A pleiotropy of antitumor effects is kickstarted by those
T-cells ranging from stimulatory feedback loops to IFN release
(which has an anti-angiogenic, anti-proliferative, and pro-
apoptotic effect) and from complex interactions between
subtypes of mainly T lymphocytes, resulting in antitumor attacks,
to chemokine expression (CXCR3) which attracts other immune
cells towards the tumor. Also the latter effect may be indirectly
caused by IFN [50]. Furthermore, a neutrophilic inflammation
reaction is also seen in ICD [51].

Immunogenicity of different types of RCDs
Before the discovery of ICD, apoptosis was generally interpreted as
non-immunogenic regulated cell death manner (Table 1). How-
ever, in autoimmune diseases, apoptotic cellular antigen has long
been identified as a target of autoantibodies in autoimmune
diseases, which hints the relation between apoptosis and
immunity [52, 53]. Early study showed that under certain subclass
of therapies, apoptosis induced can be immunogenic and pro-
inflammatory [54]. Subsequent studies have demonstrated that
using various ICD inducers, apoptotic cancer cells can be used as
cancer vaccines causing tumor regression to different extents in
different cancers. However, as mentioned above, other types of
RCD typically associated to more robust inflammatory responses,
have been shown to elicit ICD.
Necroptosis is ‘programmed’’ by the activation/phosphorylation

of receptor-interacting protein kinase-1 (RIPK-1), RIPK-3, and
mixed lineage kinase domain-like pseudokinase regulated path-
way, ultimately causing the permeabilization of plasma membrane
[55], Necroptosis is an alternative RCD that could elicit ICD [56]
especially in apoptosis-resistant cancer cells subpopulations
[57–59]. Under certain circumstances, necroptotic cancer cells
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can induce ATP secretion and CXCL1 release, become phagocy-
tized by DCs and stimulate their maturation. To be noted, in the
study of Aaes et al. [60], necroptotic cancer cells failed to cause ER
stress and the translocation of CRT from ER to plasma membrane.
Further in vivo study validated that necroptotic cancer cells can
induce a potent immune response by the cross-priming,
proliferation, and cytokine release of cytotoxic T-cells [56].
Moreover, necroptosis has been shown to result in a higher
presence of CD8+ T-cells and to reduce the number of myeloid-
derived suppressor cells in pancreatic tumors [61].
Over the last decade more types of RCD have been defined and

their immunogenicity was subsequently studied. Ferroptosis, an
iron-mediated and lipid peroxidation-driven necrotic cell death,
can induce the secretion of ATP and the release of HMGB1 in
fibrosarcoma and glioma [62]. However, the immunomodulatory
function of ferroptosis may depend on the cell death stage. A
recent study shows that, only in the early stage, ferroptosis can
promote the maturation of DCs, but not in the late stage [62].
Hence whether, when, and how ferroptosis might open another
door of prompting ICD, especially when other RCDs are ‘silenced’’
in cancer cells is still unclear. More in-depth studies are needed to
further understand the mechanistic underpinnings of this form of
RCD and its impact on immune responses.
Besides, different types of RCD can exist simultaneously in ICD

induced by a single inducer. Turubanova et al. showed that in
photosens -PDT induced ICD, cell death can be inhibited by both
zVAD-fmk (apoptosis inhibitor) and ferrostatin-1 and DFO
(ferroptosis inhibitors), which means apoptosis and ferroptosis
are co-existing during the process [22]. Further research on the

cross-talk of different RCDs is warranted [63]. Moreover, the anti-
tumor immunity potential of other genetically defined necrotic
cell death processes, like secondary necrosis, pyroptosis, and PAN-
optosis, which integrates pyroptosis, apoptosis, and necroptosis
into a unified programmed cell death behavior, is currently under
investigation [64].

Cell autonomous mechanisms of ICD evasion
A hallmark of cancer cells is evasion from the surveillance of the
immune system [65]. While various cancer cell autonomous and
non-autonomous factors contribute to this complexity and are still
under investigation, it is intriguing that tumor cells may evade ICD
by the chronic deregulation of processes regulating cell proteos-
tasis, such as the unfolded protein response and autophagy, that
contributes to the immunogenicity of the stressed/dying cancer
cells. Clearly, acute activation of the lethal arm of ER stress by
therapy-induced cellular stress and death pathway, harness the
‘danger’’ component of this stress response, in a fashion similar to
that induced by microbial pathogens, thus turning sterile cancer
cell death into a mimicry of pathogen-induced cell demise, with
consequent activation of immune responses.
However, certain cancer cell autonomous mechanisms regulat-

ing proteostasis can either subvert danger signaling pathways
(like the PERK-eiF2α axis [66]), cause retention of DAMPs thereby
impairing the proficient dialogue between dying cancer cells and
the immune system or secrete mutate forms of DAMPs (like
mutant CRT) which supposed to act as a decoy for DCs in the wild-
type [67]. For example, in glioma Bip upregulation, a typical
marker of the activation of the unfolded protein response,

Table 1. Studies on immunogenicity/ICD potential of different types of RCDs.

Study ICD inducer PCD DAMPs Other proof of
immunogenicity

Casares et al. (2005) [27] Doxorubicin (DX) Apoptosis HMGB1, HSP70

Tesniere et al. (2010) [25] Oxaliplatin (OXP) Apoptosis Ecto-CRT, HMGB1

Panzarini et al. (2014) [26] Rose Bengal Acetate Photodynamic
Therapy (RBAc-PDT)

Apoptosis Ecto-CRT, ATP, HMGB1,
HSP70, and HSP90

Koks et al. (2015) [136] Newcastle disease virus (NDV) Necroptosis Ecto-CRT, ATP, HMGB1,
HSP70, and HSP90

Aaes et al. (2016) [56] Doxycycline (doxy)/doxy+ B/B dimerizer Necroptosis ATP and HMGB1 DC maturation

Teo et al. (2017) [140] BYL719 (PI3Ka inhibitor)+ LEE011(CDK4/6
inhibitor)

Apoptosis Ecto-CRT

Hossain et al. (2018) [20] Dinaciclib Apoptosis Ecto-CRT, ATP, and HMGB1

Li et al. (2018) [137] Doxorubicin-polyglycerol-nanodiamond
composites

Apoptosis Ecto-CRT, HMGB1,
and HSP90

DC maturation

Turubanova et al. (2019) [21] Photosens Apoptosis and
ferroptosis

Ecto-CRT, ATP, and HMGB1 IL-6

Turubanova et al. (2019) [21] Photodithazine (PD) Apoptosis Ecto-CRT, ATP, and HMGB1 IL-6

Efimova et al. (2020) [62] RAS-selective lethal 3 (Early)
ferroptosis

ATP and HMGB1 DC maturation

Franco-Molina et al. (2020)
[141]

Panobinostat (PAN) Apoptosis HMGB1, HSP70,
and HSP90

Franco-Molina et al. (2020)
[141]

Lophophora williamsii (LW) Apoptosis HMGB1, HSP70,
and HSP90

Jeong et al. (2021) [23] Fluorinated mitochondria-disrupting
helical polypeptides (MDHPs)

Apoptosis Ecto-CRT, ATP, and HMGB1

Villamañan et al. (2021) [142] Temozolomide (TMZ)+ CX-4945 (protein
kinase CK2 inhibitor)

Unspecified Ecto-CRT and ATP

Turubanova et al. (2021) [22] Porphyrazines (pz I)-PDT Apoptosis ATP and HMGB1 DC maturation

Turubanova et al. (2021) [22] Porphyrazines (pz III)-PDT Apoptosis and
Necroptosis

ATP and HMGB1 DC maturation

Tomić et al. (2021) [24] Plasma-activated medium (PAM) Apoptosis DC maturation

B. Decraene et al.

3

Genes & Immunity (2022) 23:1 – 11



restricted DAMPs exposure and release in glioma stem cells [68]. A
recent study also reported that cancer cells may avoid the exposure
of CRT through a mechanism involving stanniocalcin-1 mediated
retention of CRT in the cytoplasm (thus suggesting a pool of
cytosolic CRT), a process that impairs phagocytosis by antigen-
presenting cells and subsequent anticancer adaptive immunity [67].
Hence, strategies designed to target deranged proteostasis in
cancer cells in order to reinstate the cancer cell-immune cell
dialogue, will require an increased knowledge of the inhibitory
elements of the danger signaling pathway elicited by ICD.

ICD and Glioblastoma
Glioblastoma, a grade IV glioma, is the most aggressive type of
primary brain tumor with a dismal prognosis of approximately
15 months under standard of care therapy which consists of
maximal safe surgical resection followed by both radiotherapy and
chemotherapy (Temozolomide) [69, 70]. However, a minority of
patients, estimated to be around 3% of all GBM patients, can live
up to five years or longer [71]. This contributes to the new vision
on GBM where it is not considered to be one fixed entity but
rather an inter- and intrapersonal heterogeneous tumor behaving
differently among patients. Several immunological reasons for the
poor prognosis in GBM have been postulated. Amongst these
the most important ones seem the GBM-associated lymphopenia,
the ‘cold state’’ of these tumors depriving them from effector
T-cell infiltration, their inability to become fully activated, and the
formerly mentioned heterogeneity [72]. Over the past years there
has been increasing evidence pointing towards the propensity to
undergo ICD as a prognostic factor linked with longer survival in
cancer patients in general including GBM patients [3]. Fitting in
the ‘heterogeneity picture’’ there is the observation that a tumor
with a higher ICD propensity could elicit a stronger anti-tumor
immune response and as such could combat and slow down
tumor growth more efficiently [73]. Subsequently, this would also
result in a stronger anti-tumor ‘self-vaccine’’ response (Fig. 1).
The GBM tumor microenvironment consists of tumor cells (from

glioma stem cells to fully differentiated tumor cells), resident
(microglia), and infiltrating immune cells (in GBM mainly macro-
phages and much less T-lymphocytes), structural stromal (endothelial,
astrocytes, oligodendrocytes), and neuronal cells. Whereas the direct,
innate immune response (which consists of cells like macrophages, a
few NK cells, and others) is the first line of defense against tumor
cells, it also primes a more precise and stronger response called ‘the
adaptive immune response’ (of which lymphocytes are the main cell

type). This response recognizes tumor antigens presented by the
proper major histocompatibility complex (MHC) molecules. Although
in broad terms of e.g. T-cell infiltration, the immune framework in
most GBMs looks similar, the exact immune cell composition of the
tumor microenvironment varies over time (for example primary
versus recurrent GBMs) and space (‘‘intratumoral heterogeneity’’) [74].
The latter indirectly implies the complexity of all possible interactions
that can take place between immune and/or tumor cells within the
tumor microenvironment. Furthermore, the constitution can also be
modified by external factors, like chemo-or radiotherapy [75, 76].
Certain therapies used in the treatment of brain tumors, can

induce the main cell death-associated hallmarks of ICD [27, 77].
pushing the final effect on the tumor beyond the results of the
initiating therapeutic mechanisms of e.g chemo-and radiotherapy.
[4] However, how GBM heterogeneity and the associated tumor
microenvironment enact cancer cell-intrinsic resistance mechan-
isms blunting the responses to potential ICD-inducing regimens
remains incompletely understood.

ICD-inducing modalities in GBM
Several treatment modalities can induce ICD and thus an anticancer
immune response reinforcing the effects of conventional treatment
methods (Table 2). However, so far only a few bona fide ICD
inducers have been identified and were tested in clinical trials
[78, 79].
Photodynamic therapy (PDT) has been tested in several cancers,

among which GBM [80]. One large review of literature looking at
over 1000 patients in several observational studies concluded PDT
to be a safe and beneficial treatment method leading to a
significant prolongation of good quality survival [81]. However, the
quality of the included studies is limited as no randomized
controlled trials are performed yet. Moreover, it is worth
mentioning that PDT is less effective in the hypoxic niche, as
well that it itself exacerbates hypoxia [82, 83]. Currently, different
strategies are being developed to tackle this issue [84–86]. It is to
notice that one of the main forms of PDT is 5-aminolevulinic acid
which is a prodrug metabolized in high grade glioma into a
fluorescent metabolite and commonly used to guide maximal safe
resection in newly diagnosed and recurrent GBM [87].
Radiotherapy was also found to possess ICD inducing properties

in several cancers [88]. It can render the tumor microenvironment
more immunogenic by increasing MHC and cell death receptor
expression thereby improving the killing of irradiated tumor cells
by NK cells and T-cells [89]. It further expresses chemokines

Fig. 1 Clinical setting of ICD-based GBM vaccination. After GBM resection, ICD will be induced using GBM cells from resected tumor tissue.
Next, DC vaccine are prepared ex vivo by exposing autologous DCs to GBM cells dying through ICD. The vaccine contains GBM cells, which are
avitalized after ICD induction, and DAMPs, which are either exposed, secreted or released. After applying to the patient, with tumor antigen
presented by DCs, effective and GBM-specific T-cell response will be triggered and augmented. Remaining GBM cells will then be targeted to
suppress GBM growth and regression. As a result, prolonged survival of the patient might occur.
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(CXCL16) and increases IFN -γ production contributing to T-cell
infiltration and recognition of tumor cells by CD8+ T-cells [90–92].
Up till now, a biomarker to predict the ICD inducing capacity of
Radiotherapy in cancer has not been identified [93]. Radiotherapy
as a standalone ICD inducer is rarely studied in clinical trials and
the potential benefit is more often explored in combinational
treatment methods. E.g., in breast cancer, the combination of
radiotherapy and Imiquimod (a topical TLR7 agonist) decreases
recurrence rates and improves primary tumor response [94]. By
analyzing the concentration of HMGB1 and of Hsp70 in super-
natants of glioblastoma cell cultures treated with fractionated
Radiotherapy an increase in these DAMPs was seen [95, 96] (In this
studies the ICD inducing capacity of temozolomide was found to
be limited). Up till now, no clinical trials have been performed in
glioma.
Several chemotherapeutic agents have shown to induce ICD;

paclitaxel, anthracyclines, and anthracycline-derivatives with
bleomycin and doxorubicin being the most known ones
[27, 97, 98]. In glioma mouse models cyclophosphamide was
found to initiate ICD, but evidence in glioma patients is lacking
[99]. Furthermore, prolonged oxaliplatinum treatment resulted in
elevated translocation of calreticulin to the cell surface in glioma
cells [100]. It is also worth mentioning that not all chemother-
apeutic agents induce ICD, although the exact mechanism why
some do and others don’t is still under investigation. Furthermore,
an extrapolation of the ICD inducing ability of chemotherapeutic
agents in extracranial cancers to brain tumors is not correct. While
for example platinum compounds like cisplatinum induce ICD in
several extracranial cancers, this effect was not seen in primary
brain tumors [25, 101]. Studies investigating the effect of ICD-
inducing chemotherapeutic Oxaliplatin in combination with
oncolytic viruses in colorectal cancer in mice saw an additional
effect leading to diminished tumor growth and longer median
survival [102]. This is in line with earlier studies showing the ICD
inducing capacity of oncolytic viruses [103, 104].
Chemotherapeutic drugs loaded in a tumor microenvironment

-responsive nanoparticle and injected into a tumor improved the
ICD effect, released more DAMPs, or increased immune infiltration
of DCs and T lymphocytes compared to free delivered drugs [105].
In PTEN-negative orthotopic GBM epirubicin-loaded micelles in
combination with anti-PD1 therapy overcame the weakening of
antitumor effects of immune checkpoint inhibitors normally
caused by lymphodepletion when administered systemically
[106]. Another nanotechnique used is called ‘nanopulse stimula-
tion’’. Here a very short electrical pulse is repeatedly administered
at a high amplitude to the tumor, subsequently triggers ER stress,
and therefore acts as an ICD-inducer [107]. However, both
nanotechniques are still in their infancy.
Near-infrared photoimmunotherapy is another recently devel-

oped technique. This hybrid technique consists of an antibody
that targets specific tumor antigens and a photo-activating,
phthalocyanine-based chemical, IRDye700DX that attracts the NIR
light. This light triggers cytotoxic reactions in the targeted cancer
cells causing ICD [108]. Increased levels of DAMPs were seen when
near-infrared photoimmunotherapy was applied implying its ICD
inducing effect. Further clinical trials are on their way.
Other less known ICD inducers are high hydrostatic pressure

and hyperthermia. High hydrostatic pressure induces the expres-
sion on the cell surface and the release of DAMPs on a wide
variety of human tumor cells (leukemia, ovarian cancer, and
prostate cancer) [109]. Hyperthermia (ranging from 41 °C to 44 °C)
includes local as well as whole body administration of heat. It has
several effects on the tumor microenvironment including
improvement of antigen presentation, maturation, and migration
of DCs, and also facilitates migration of T-cells to lymph nodes.
The main disadvantage is collateral damage of the heat to non-
tumoral regions, although the nanoparticle carrier technique
discussed above is being explored here as well. The clinical

significance of this technique is currently limited to combination
treatments with chemotherapy or immunotherapy and the
radiosensitization effect of hyperthermia. Studies were done in
breast, gastrointestinal, cervical, and head-&-neck cancer [110–
114]. In the brain, induction of hyperthermia is being hampered by
obvious safety constraints but with more accurate thermal
monitoring tools, controlled hyperthermia is being explored in
brain tumors as well. Examples are laser interstitial thermal
therapy and high-intensity focused ultrasound. Laser interstitial
thermal therapy is a percutaneous ablative procedure in which
thermal laser energy is delivered via an optic fiber probe precisely
into the tumor under stereotactic guidance [115]. It is being used
in several brain tumors, especially in non-resectable GBM,
although large clinical trials concerning the exact benefit and
application are still lacking. High-intensity focused ultrasound is
another non-invasive intracranial ablation technique in which a
focused beam of ultrasound rays is targeted at a limited tumoral
region to maximize local energy accumulation causing tumoral
tissue destruction [116]. Several small case studies have been
published showing a survival advantage using this technique in
GBM patients [117–119]. However Medel et al.,61 postulated that
GBM might not be the ideal pathology for this treatment modality
and it might be more successful for well-circumscribed tumors,
such as metastases or low-grade brain tumors, where surgery
cannot be performed [120, 121].
Also, it was discovered that certain targeted drugs, epidermal

growth factor receptor inhibitors and tyrosine kinase inhibitor
Crizotinib, might also exert an ICD inducing effect although both
have only been tested in mice [18, 122].
Specifically, for GBM, ‘Tumor treating fields’’ is a novel clinically

integrated treatment modality with ICD potential [123–125]. This
technique, first described in 2004, uses very-low-intensity,
intermediate-frequency alternating electrical fields that exert
several antitumoral effects. The induction of ICD is one of the
key mechanisms behind this therapy, next to neovascularization,
antimitotic activity, and inhibition of cancer cell migration,
invasion, and proliferation [125]. It was proven to be both
effective and safe in GBM-patients in two-phase three RCTs
[123, 124]. Although tumor treating fields showed an increase in
overall survival in both newly diagnosed and recurrent GBM, the
preferable combination with other currently used anticancer
modalities should be further investigated [126].
Another promising technique is DC-based vaccination (Fig. 1). In

a high-grade glioma mouse model harnessing the potential of
Hypericin-PDT based DC vaccines, these vaccines reduced the
immunosuppressive GBM burden and synergized with the anti-
GBM action of temozolomide and resulted in an increased overall
mice survival of approximately 300% [127] Interestingly, the
efficacy of stressed/dying cells after Hypericin-PDT to induce DC
maturation and the overall efficiency of DC vaccines, were
abolished by the neutralization of the main ICD-associated DAMPs
namely HMGB1, ATP and CRT [128]. This is in line with the finding
that, in contrast to anthracyclines or other regimens, Hyp-PDT
mediated ICD is not associated to the stimulation of Type I IFN
responses [16, 129, 130]. Considering that in about 50% GBM
patients, type I and/or type II IFN family genes are deleted
intrinsically [131], this suggests that Hypericin-PDT elicited
immunogenicity will not be compromised and should be
considered for its potential clinical application in GBM.
Several, mostly small, clinical trials have been published (Table 1).

In general, they point towards a small benefit in terms of survival in
combination with other treatment modalities. However, substantial
and significant improvements were not yet found. The hetero-
geneity in-between GBM tumors may be a possible underlying
explanation in the discrepancy seen in vaccine responses.
Another recent experimental technique described in a GBM

mouse models is an injectable hydrogel system that can be
delivered into the postsurgical tumor cavity. It subsequently
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induces ICD and results in a sustained T-cell infiltration, therefore
mimicking a hot tumor immune environment which combats local
tumor remnants, preventing recurrence. Both a prolonged survival
and decreased tumor relapse were seen [132].
Other less known ICD-based techniques that are currently being

developed are genetically engineered viruses (oncolytic viruses),
which uses viral vectors (and thus unable to replicate) to deliver
cytotoxic material to the tumor cells resulting in ICD [133–135]. Also
naturally occurring oncolytic viruses have been described [136].
Another modality are protein kinase CK2 inhibitors, which shows
already at low concentrations cytotoxic activity in GL261 GB cells,
inducing ICD; DC-mediated delivery of doxorubicin-polyglycerol-
nanodiamond composites, a potent DAMPs inducer [137]; as well as
liposomes modified to cross the blood-brain barrier and loaded
with the chemotherapeutic drug Doxorubicin [138].
Finally, although necroptotic components were found in GBM,

the influence on the immune environment was to our knowledge
never examined [139].

CONCLUSION
ICD is rapidly gaining research momentum as a key-mechanism to
pursue in effective and sustainable cancer therapies. Current
evidence of its importance in glioma therapies is often indirect,
scattered and inconclusive but in analogy with many other tumor
types, ICD propensity could become a pivotal prognosticator for
long-term disease control and continues to capitalize on its -at
least theoretical -potential for cure.
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