
Heredity (2021) 126:577–596
https://doi.org/10.1038/s41437-021-00412-1

REVIEW ARTICLE

A guide for kernel generalized regression methods for genomic-
enabled prediction

Abelardo Montesinos-López1 ● Osval Antonio Montesinos-López 2
● José Cricelio Montesinos-López 3

●

Carlos Alberto Flores-Cortes2 ● Roberto de la Rosa4 ● José Crossa 5,6

Received: 24 October 2020 / Revised: 23 January 2021 / Accepted: 24 January 2021 / Published online: 1 March 2021
© The Author(s) 2021. This article is published with open access

Abstract
The primary objective of this paper is to provide a guide on implementing Bayesian generalized kernel regression methods for
genomic prediction in the statistical software R. Such methods are quite efficient for capturing complex non-linear patterns that
conventional linear regression models cannot. Furthermore, these methods are also powerful for leveraging environmental
covariates, such as genotype × environment (G×E) prediction, among others. In this study we provide the building process of
seven kernel methods: linear, polynomial, sigmoid, Gaussian, Exponential, Arc-cosine 1 and Arc-cosine L. Additionally, we
highlight illustrative examples for implementing exact kernel methods for genomic prediction under a single-environment, a multi-
environment and multi-trait framework, as well as for the implementation of sparse kernel methods under a multi-environment
framework. These examples are followed by a discussion on the strengths and limitations of kernel methods and, subsequently by
conclusions about the main contributions of this paper.

Introduction

Genomic selection (GS) is a methodology that predicts the
breeding (or genetic) values of candidate individuals using a
statistical machine learning model trained with a reference
(training) population for which only phenotypic and geno-
typic information is measured (Meuwissen et al. 2001).
However, the quality of GS results are strongly dependent
on the quality of both genotypic and phenotypic training
data. For this reason, the genotypic information should be
representative of the genome of each line, just as the lines in
the training sample should also be representative of the
target (testing set) for which predictions are required.
Moreover, the statistical machine learning algorithms used
for performing the predictions are of paramount importance
since the assumptions of each of these models can either
limit or improve the prediction performance in a particular
data set. For example, linear regression models cannot
capture non-linear patterns in input data since they pre-
suppose only linear patterns. For example, Waldmann
(2018) found that the resulting testing set mean square error
(MSE) on the simulated TLMAS2010 data were 82.69,
88.42, and 89.22 for the multilayer-perceptron (MLP) non-
linear model, the genomic best linear unbiased predictor
(GBLUP) and Bayesian Lasso (BL) respectively. Addi-
tionally in this study, he found that the non-linear model

Associate editor Dario Grattapaglia

* Osval Antonio Montesinos-López
oamontes2@hotmail.com

* José Crossa
j.crossa@cgiar.org

1 Departamento de Matemáticas, Centro Universitario de Ciencias
Exactas e Ingenierías (CUCEI), Universidad de Guadalajara,
44430 Guadalajara, Jalisco, México

2 Facultad de Telemática, Universidad de Colima, 28040
Colima, México

3 Departamento de Estadística, Centro de Investigación en
Matemáticas, 36023 Guanajuato, México

4 Colegio de Postgraduados (CP), Campus Tabasco, Producción
Agroalimentaria en el Trópico, H. Cárdenas, Tabasco, México

5 Colegio de Postgraduados, Campus Montecillos, CP 56230
Montecillos, Edo. de México, México

6 Biometrics and Statistics Unit, International Maize and Wheat
Improvement Center (CIMMYT), Km 45, CP 52640
Carretera Mexico-Veracruz, México

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00412-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00412-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-021-00412-1&domain=pdf
http://orcid.org/0000-0003-4464-3385
http://orcid.org/0000-0003-4464-3385
http://orcid.org/0000-0003-4464-3385
http://orcid.org/0000-0003-4464-3385
http://orcid.org/0000-0003-4464-3385
http://orcid.org/0000-0001-5017-6192
http://orcid.org/0000-0001-5017-6192
http://orcid.org/0000-0001-5017-6192
http://orcid.org/0000-0001-5017-6192
http://orcid.org/0000-0001-5017-6192
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
mailto:oamontes2@hotmail.com
mailto:j.crossa@cgiar.org

(MLP) only outperformed the linear models by 1%. How-
ever, Waldmann et al. (2020) later used the same
TLMAS2010 data and found that under the convolutional
neural network (CNN) non-linear model, the MSE was
equal to 62.34, while under linear models (GBLUP and
BL), it produced a MSE over folds of 88.42 and 89.22,
respectively. In another study, Khaki and Wang (2019) used
a maize dataset of the 2018 Syngenta Crop Challenge to
evaluate the prediction performance of the MLP (deep
learning method) against the performance of Lasso regres-
sion (LR) and regression tree (RT). They reported that the
MLP model with 20 hidden layers outperformed conven-
tional genomic prediction models (LR and RT). Further-
more, Ma et al. (2018) also used CNN to predict phenotypes
from genotypes in wheat, where they found that the non-
linear method, CNN, outperformed the GBLUP method.

In plant breeding, many traits like grain yield have a
complex genetic architecture that is not well understood
(Golan and Rosset 2014) and when the modeling process
is only able to capture linear patterns, it cannot perform
the best possible mapping between the phenotypic and
genotypic information. For this reason, the phenotypic
prediction for such traits remains a major challenge. One
of the strategies used to improve the phenotypic predic-
tion is to consider the epistatic effects, within the pre-
dictor, that are genetic interactions (Cordell 2002).
Epistatic interactions are not particular to plant breeding,
and there is growing empirical evidence that they are also
very common in other fields of biology (Moore and
Williams 2009; Lehner 2011; Hemani et al. 2014; Buil
et al. 2015). While epistatic interactions are biologically
plausible on the one hand (Zuk et al. 2012), they are
difficult to detect on the other (Cordell 2009), suggesting
that they may be highly influential in our limited success
at modeling complex heritable traits.

Martini et al. (2020) demonstrated that the whole
genome epistasis models with interactions between dif-
ferent loci could be approximated based on Hadamard
powers of the additive genomic relationship and provided
an explicit formula to quantify the approximate error. The
authors shown that the quality of the given approximation
decreases when the degree of the interaction increases.
Jiang and Reif (2015) found that modeling epistasis
explicitly in the linear predictor of the genomic prediction
model increases prediction performance, which can also
be captured by using a Gaussian Kernel. Furthermore,
these authors also point out that the prediction perfor-
mance can be improved by modeling epistasis for selfing
species, with the exception of outcrossing species.
Another common approach for modeling epistatic effects
is to include the main line effects with the additive
genomic relationship matrix (GRM) as a correlation
matrix, with the epistatic relationship matrix computed as

the Hadamard product of the additive relationship matrix
by itself (Henderson 1985). There is empirical evidence
that when the dominant or epistatic effects are modeled in
addition to the additive effects, simulation studies show
up to 17% more accurate predictions based on the sum of
both, as opposed to predictions based solely on additive
effects (Wellmann and Bennewitz 2012; Da et al. 2014).

For this reason, kernel regression methods like Repro-
ducing Kernel Hilbert Spaces (RKHS) regression have been
proposed in plant and animal breeding to capture complex,
non-linear patterns (Gianola et al. 2006; Gianola and van
Kaam 2008). The basic idea of RKHS methods is to project
the original independent variables given in a finite dimen-
sional vector space into an infinite-dimensional Hilbert
space. Kernel methods transform the independent variables
(inputs) using a kernel function, followed by the application
of conventional machine learning techniques to the trans-
formed data to achieve better results. RKHS methods based
on implicit transformations have become very popular for
analyzing non-linear patterns in data sets from various fields
of study. Kernel methods obtain measures of similarity
between objects that do not have a natural vector repre-
sentation. Even though kernel methods exploit complexity
to improve prediction accuracy, they do very little to
increase the understanding of the complexity since para-
meters like beta coefficients in linear regression are difficult
to interpret. Heritability can also be estimated with kernel
methods under a mixed model framework—albeit this only
works with some types of kernels (Mathew et al. 2018;
Ma and Dicker 2019). On the other hand, three crucial
advantages of kernel methods over deep neural networks are
that (a) these methods guarantee a global minimum (unique
solution), (b) are considerably easier to tune since they have
few hyper-parameters and (c) take advantage of the so-
called kernel trick to capture non-linear patterns at a rea-
sonable computational cost, working efficiently in the con-
text of large independent variables (p) and small sample size
(n) (Morota et al. 2013).

In general, the building process of kernel machines con-
sists of two, general but independent steps. The first step
consists in calculating the Gram matrix (kernel matrix) using
only the information of the independent variables (input);
during this process, the user must define the type of kernel
function that will be used in such a way as to capture
the hypothesized non-linear patterns in the input data. In the
second step, after the kernel matrix is built, we select the
statistical machine learning algorithm to be used for training
the model using the dependent variable and other available
covariates, in addition to the kernel matrix from the first step.
These two steps imply that we do not need to modify the
statistical machine learning algorithm to accommodate a
particular type of kernel function. It is important to point out
that although the best known application of kernel methods is

578 A. Montesinos-López et al.

in Support Vector Machines (SVM), once the kernel matrix is
ready, we can use any learning algorithm to train the model.
The only important consideration to bear in mind when
choosing the kernel, that it is suitable for the data at hand.

It is equally important to mention that since many
machine learning methods are only able to work with linear
patterns, the kernel trick allows building non-linear versions
of the linear algorithms without having to modify the ori-
ginal machine learning algorithm. Therefore, any algorithm
based on distances between objects can be formulated in
terms of kernel functions, by applying the so-called “Kernel
trick”. However, RKHS methods are not limited to regres-
sion; they are also very powerful for classification and data
compression problems, in addition to being theoretically
sound for dealing with non-linear phenomena in general.
For these reasons, they have found a wide range of practical
applications ranging from topics such as bioinformatics to
text categorization, image analysis to web retrieval, 3D
reconstruction to handwriting recognition and geostatistics
to chemoinformatics (Shawe-Taylor and Cristianini 2004).
The increase in popularity of kernel-based methods is due in
part to the rich way in which they capture non-linear pat-
terns in data that cannot be captured with conventional
linear statistical learning methods (Gianola and van Kaam
2008; de los Campos et al. 2010; Endelman 2011). The
artificial deep neural networks, random forest, and some
other machine learning models do not require the kernel
trick and can still work with non-linear patterns without
modifying the original machine learning algorithm.

In GS, the application of RKHS methods continues to
increase; for example, Long et al. (2010) found better
performance of RKHS methods over linear models in the
body weight of broiler chickens. Crossa et al. (2010)
compared RKHS versus Bayesian Lasso and found that
RKHS was better than Bayesian Lasso in the wheat data
set, whereas similar performances of both methods were
observed in the maize data set. Cuevas et al.
(2016, 2017, 2018) also found a superior performance of
RKHS methods over linear models using Gaussian ker-
nels in maize and wheat data. Cuevas et al. (2019) found
that through the use of pedigree, markers and near
infrared spectroscopy (NIR) data—an inexpensive and
non-destructive high-throughput phenotyping technology
for predicting unobserved line performance in plant
breeding trials—kernel methods (Gaussian kernel and
arc-cosine kernel) outperformed linear models in terms of
prediction performance. The degree of superiority of
kernel methods over linear models is both data and
kernel-function dependent. For this reason, we can expect
significant improvements when applying the right kernel
to data sets with complex non-linear patterns.

Nevertheless, other authors found minimal differences
between RKHS methods and linear models, as exemplified

by Tusell et al. (2013) in their study on litter size in swine;
Long et al. (2010) and Morota et al. (2013) in dairy sires
progeny test; and Morota et al. (2014) in phenotypes of
dairy cows. These publications have empirically shown
equal or better prediction ability of RKHS methods over
linear models, and for this reason, the application of kernel
methods in GS is expected to increase since these can be
implemented in current genomic prediction software. In
addition, these methods are a) very flexible; b) good for
making predictions in complex settings, even though they
can be difficult to interpret because of the similarity func-
tion, especially when working with purely mathematical
functions lacking biological basis under their construction;
and c) theoretically appealing for accommodating cryptic
forms of gene action (Gianola et al. 2006; Gianola and van
Kaam 2008). Likewise, these methods can be used with
almost any type of information (e.g., covariates, strings,
images and graphs) (de los Campos et al. 2010), and
computation is performed in an u-dimensional space even
when the original input information has more columns (p)
than observations (n), thus avoiding the p >> n problem (de
los Campos et al. 2010). Finally, kernel methods can also be
appreciated for providing a new perspective, and while we
are still far from completely understanding these methods,
they are attractive for their computational efficiency,
robustness and stability.

Based on the previous considerations, the main objective
of this study is to provide a user-friendly way of imple-
menting regression and classification methods based on
kernels in the statistical R software. Additionally, we cover
the essentials of kernel methods, as well as examples on
how to handcraft an algorithm of a kernel for applications in
the context of genomic selection.

Material and methods

Data sets and data availability

Wheat data set

This is a toy data set composed of 30 lines, three environ-
ments (JBL, LDH, PUS) and two continuous traits: grain
yield (GRYLD) and days to heading (DTHD). This data set
contains 29,157 markers coded 0, 0.5 and 1. The R file
Data_Wheat_2019 RData contains the phenotypic and
genotypic data and is available at https://hdl.handle.net/
11529/10548532.

EYT data set

This wheat toy data set is composed of 40 lines, four
environments (Bed5IR, EHT, Flat5IR, LHT), and four

A guide for kernel generalized regression methods for genomic-enabled prediction 579

https://hdl.handle.net/11529/10548532
https://hdl.handle.net/11529/10548532

response variables: DTHD, days to maturity (DTMT),
grain yield and height. In terms of genomic information,
this data set contains the G_Toy_EYT genomic rela-
tionship matrix with dimension of 40 × 40. The first two
traits are ordinal with three categories, the third is con-
tinuous and the last one (Height) is binary. The pheno-
typic and genotypic data set is available in the
Data_Toy_EYT.RData (see link https://hdl.handle.net/
11529/10548532). It is important to point out that all
traits in the original data set are continuous and were
converted to ordinal and binary data for the purpose of
illustration.

Kernel functions

A kernel function transforms information on a pair of
items into a quantitative measurement representing its
proximity with the restriction, and as such, the function
must create a symmetric positive semi-definite (psd)
matrix when applied to any subgroup of items. From a
statistical standpoint, the kernel matrix can be viewed as
a covariance matrix used to non-linearly transform the
predictors (input) data x1,…,xp ∈ χ into a high-
dimensional feature space. For this reason, a kernel
function, K, is defined as a “similarity” function that
corresponds to an inner product in some expanded feature
space that for all xi, xj ∈ X satisfies:

K xi; xj
� � ¼ φ xið ÞTφ xj

� �

Where φ() is a mapping (transformation) function that
translates the input from one space to another high-
dimensional space. We can understand the feature space
as the u- dimensions where inputs (independent variables)
live. The kernel has the following properties:

(A) It is a symmetric function of its argument so that K(xi,
xj)=K(xj, xi).

(B) To be considered valid, a kernel must fit the function
K(x, xj) (Shawe-Taylor and Cristianini 2004), where
the kernel matrix K, also called Gram matrix, should
be positive and semidefinite for all possible choices of
the set (xi).

(C) Kernels are all those functions K(u,v) that verify
Mercer’s theorem, that is, for which

Z

u;v
K u; vð Þg uð Þg vð Þdudv> 0

for all (u) square-integrable functions.
Below, we provide kernel functions to build some pop-

ular kernels.

Linear kernel

This kernel is defined as Kðxi; xjÞ ¼ xTi xj (Shawe-Taylor
and Cristianini 2004). For example,

K x; zð Þ ¼ x1; x2ð Þ z1
z2

� �
¼ x1z1 þ x2z2 ¼ φ xð ÞTφ zð Þ

This kernel leaves the original representation unchanged,
that is, it does not overcome the linearity limitation of linear
classification and linear regression models. This means, that
the mapping function, φ(), in this kernel is the identity
function, as the input is unaltered.

Polynomial kernel

This kernel is defined as K xi; xj
� � ¼ γxTi xj þ a

� �d
where a is

a real scalar and d is a positive integer, and where γ > 0, a ≥ 0,
and d > 0 are parameters (Shawe-Taylor and Cristianini
2004). For example, when γ= 1, a= 1 and d= 2 we have:

K x; zð Þ ¼ x1; x2ð Þ z1
z2

� �
þ 1

� �2

¼ x1z1 þ x2z2 þ 1ð Þ2

¼ 1þ 2x1z1 þ 2x2z2 þ x21z
2
1 þ x22z

2
2 þ 2x1z1x2z2

¼ 1;
ffiffiffi
2

p
x1;

ffiffiffi
2

p
x2; x21;

ffiffiffi
2

p
x1x2; x22

� �

1ffiffiffi
2

p
z1ffiffiffi
2

p
z2

z21ffiffiffi
2

p
z1z2
z22

2
666666664

3
777777775
¼ φ xð ÞTφ zð Þ

The dimension of the feature space for the polynomial

kernel is equal to
nþ d
d

� �
.

Sigmoidal kernel

This kernel is defined as K xi; xj
� � ¼ tanh xTi xj þ a

� �
,

where tanh is the hyperbolic tangent defined as:

tanh zð Þ ¼ sinh zð Þ=cosh zð Þ ¼ exp zð Þ�exp �zð Þ
exp zð Þþexp �zð Þ. If used with

properly adjusted parameters, it can represent complex non-
linear relationships. In some parameter settings, it actually
becomes similar to the radial kernel. However, the sigmoid
function may not be positive definite for some parameters,
and therefore this does not actually represent a valid kernel
(Shawe-Taylor and Cristianini 2004).

Gaussian kernel

This kernel, also known as the radial basis function kernel,
depends on the Euclidean distance between the original
attribute value vectors (i.e., the Euclidean norm of their

580 A. Montesinos-López et al.

https://hdl.handle.net/11529/10548532
https://hdl.handle.net/11529/10548532

difference) rather than on their dot product,
K xi; xj
� � ¼ e�γjjxi�xjj2j ¼ e�γ xTi xi�2xTi xjþxTj xj½ �, where γ is a

positive real scalar (Gianola and van Kaam 2008; Shawe-
Taylor and Cristianini 2004). We know that the feature
vector φ that corresponds to the Gaussian kernel is actually
infinitely dimensional (Endelman 2011).

Exponential kernel

This kernel is defined as K xi; xj
� � ¼ e�γjjxi�xjjj, which is

quite similar to the Gaussian kernel function (Shawe-Taylor
and Cristianini 2004).

Arc-cosine kernel with 1 hidden layer (AK1)

For computing the AK1, first the angle between two input
vectors is computed (Cuevas et al. 2019) as

θi;j ¼ cos�1 xTi xj
jjxijj jjxjjj

� �

where ||xi|| is the norm of line i (Cho and Saul 2009).
Finally, the AK1 is defined as

AK1 xi; xj
� � ¼ 1

π
jjxijj jjxjjj J θi;j

� � ð1Þ

J θi;j
� � ¼ sin θi;j

� �þ π � θi;j
� �

cos θi;j
� �� �

Arc-cosine kernel with L hidden layers (AKL). With
more than one hidden layer (L), Cho and Saul (2009) pro-
posed a recursive relationship of repeating L times the
interior product:

AK Lþ1ð Þ xi; xj
� � ¼ 1

π
AK Lð Þ xi; xið ÞAK Lð Þ xj; xj

� �h i1
2
J θ Lð Þ

i;j

	

ð2Þ
where θ Lð Þ

i;j ¼ cos�1 AK Lð Þ xi; xj
� �

AK Lð Þ xi; xið ÞAK Lð Þ xj; xj
� �� ��1

2

n o
.

AK(1) is computed with Eq. (1) (Cuevas et al. 2019).
It should be noted that many hybrid kernels can be

constructed with the previously mentioned kernels. We
understand hybrid kernels as two or more simpler kernels
that are combined, since complex kernels can be created by
simple operations (multiplication, sum, etc.). An example of
a hybrid kernel can be obtained by multiplying the poly-
nomial kernel and the Gaussian kernel. This kernel is
defined as xTi xj þ a

� �d
e�γjjxi�xjjj. However, other types of

kernels can be combined in the same fashion or with other
basic operations, like averaging kernels, multiplying ker-
nels, summing kernels, etc.

The functional form of the mapping φ(z) does not need
to be known since it is implicitly defined by the choice of
kernel: K(x,z)= φ(x)Tφ(z) or the inner product in a feature

space (the feature space must therefore be a pre-Hilbert or
inner product space). With a suitable choice of kernel, the
data can become separable in the feature space despite
being non-separable in the original input space: hence
kernel substitution provides a route for obtaining non-
linear algorithms from those previously restricted to
handling linearly separable datasets. Thus, for example,
whereas data for n-parity or the two spirals problem
are non-separable by a hyperplane in an input space,
they can be separated in the feature space defined by
Gaussian kernels or another type of kernel such as those
described above.

Sparse kernel under a predictor with Environment+
Genotype+ Genotype × Environment interaction

According to Cuevas et al. (2020), a predictor that contains
Environment+Genotype+Genotype × Environment inter-
action, under sparse kernels can be written as

y ¼ μ1þ ZEβE þ Pu1 f þ Pu2 l þ ε ð3Þ
where μ is the overall mean, and 1 is the vector of ones. The
fixed effects of environments are modeled with the
incidence matrix of environments ZE. The parameters to
be estimated are the intercept for each environment (βE).
Pu1= Zu1P of order n* ×m, with n*= n1+ n2+ ···+ nI, Zu1
is the incidence matrix that relates the genotypes to the
phenotypic observations and where P is computed as P=
KL,mUS

−1/2 and f is a vector of m × 1; Pu2= Pu1:ZE of order
n* ×mI and vector l is of order mI × L, and the notation Pu1:
ZE denotes the interaction term between the design matrix
Pu1 and ZE. The third term in equation (6) approximates the
term u1 � Nð0; σ2u1K1Þ, with K1 ¼ Zu1KZ0

u1, while the
fourth term approximates the term u2 � Nð0; σ2u2K2Þ, where
K2 ¼ Zu1KZ0

u1

� � � ZEZ0
E

� �
, where ° is the Hadamard

product.
Next we provide all the details on the computation of the

Pu1 and Pu2 design matrices that result from using the
approximate kernel:

Step 1:We assume that we have a matrix X that contains
the markers of each line without replication, i.e., each row
corresponds to a different line. We assume that this matrix
contains L lines (rows) and p markers (columns). It is
important to point out that this matrix is standardized by
columns.

Step 2: We randomly select m lines out of the L from the
training set X only one time.

Step 3: Next we construct kernel matrices Km,m and KL,m,
from the matrix of markers Xm,p and XL,p, respectively. For
example, for the linear kernel, kernel matrices Km,m and KL,m

are computed as: Km;m ¼ Xm;pX0
m;p

p , KL;m ¼ XL;pX0
m;p

p . Km,m and
KL,m are smaller than the original kernels of order L × L and
thus, we are able to build the sparse kernel.

A guide for kernel generalized regression methods for genomic-enabled prediction 581

Step 4: Compute the eigen value decomposition of Km,m=
USUT, where U is the matrix of eigenvectors and S is a
diagonal matrix of eigenvalues.

Step 5: Compute matrix P= KL,mUS
−1/2. P is of order

L ×m.
Step 6: Compute matrix Pu1= Zu1P= Zu1KL,mUS

−1/2,
where Zu1 is the design matrix of lines of order n*× L and
Pu1 of order n* ×m.

Step 7: Compute matrix Pu2= Pu1:ZE, where: denotes
the interaction between the design matrix Pu1 and ZE. ZE is
the design matrix of environments of order n* × I and Pu2 is
of order n* ×mI.

Step 8: Fit the model under a Ridge regression frame-
work (like BGLR or glmnet) and make genomic-enabled
predictions for future data.

The approximate kernel method (explained above) with a
predictor that contains Environment+Genotypes+Geno-
types × Environment requires that some lines were studied in
some environments, but not in all. This approximate kernel
method gains efficiency when the number of environments is
low and the number of lines is high. It is also important to
point out that the proposed sparse method does not reduce the
original number of rows existing on the data sets. Since this
does not change, the reduction is in the number of input
(independent variables) with which the model should be
trained. For example, assume that we have three environ-
ments (I= 3) and each was evaluated the same. If L= 40
lines and we have access to p= 10,000 markers for each line,
and then build a genomic relationship matrix of 40 × 40 with
marker information, this means that the dimension of the
independent variables will be equal to 3+ 40+ 40 × 3= 163,
taking into account Environment+Genotypes+Geno-
types × Environment interaction in the predictor. However,
under a sparse version of the linear kernel with m= 10, the
required number of independent variables for training this
model would be equal to 3+ 10+ 10 × 3= 43, that is, a
reduction of 163� 43ð Þ � 100

163 ¼ 73:61% in the number of
inputs. This is because the input corresponding to the lines is
reduced from 40 columns to ten.

Evaluation of prediction performance

To evaluate the prediction performance of kernel methods
with the illustrative examples provided in the results section,
we used a ten-fold cross-validation strategy that consisted in
the following steps: (1) data was randomly divided into ten
mutually exclusive subsets, (2) we performed the prediction
for each fold using 9 folds as training each time (3) we
computed the metrics for each fold in the testing sets and 4)
we averaged the ten metrics that were reported as prediction
performance of each model (Theodoridis 2020). The metrics
used were the mean square error (MSE) for continuous
response variables, the proportion of cases correctly classified

(PCCC) and the Kappa coefficient for ordinal response vari-
ables. The Kappa coefficient or Cohen’s Kappa, is defined as:
κ ¼ P0�Pe

1�Pe
; where P0 is the agreement between observed and

predicted values and is computed by the PCCC described
above for two classes; Pe is the probability of agreement
calculated as Pe ¼ tpþ fn

n � tpþ fp
n þ fpþ tn

n � fnþ tn
n , where fp is

the number of false positives, and fn is the number of false
negatives. This statistic can take on values between−1 and 1,
where a value of 0 means there is no agreement between the
observed and predicted classes and a value of 1 indicates
perfect agreement between the model prediction and the
observed classes (González-Camacho et al. 2018). Addition-
ally, we calculated the corresponding standard error (SE) for
each metric. It is important to point out that the ten-fold cross-
validation strategy was implemented with only one replica-
tion. To implant the Bayesian kernel methods, we used the
BGLR library of Pérez-Rodríguez and de los Campos (2014)
in the R statistical software (R Core Team 2020).

Results

The results are given in four sections. In the first section we
show how to compute the kernels explained in Material and
Methods, while in the second section, we provide examples
for implementing kernel methods for continuous response
variables under single-environment, multi-environment and
multi-trait analysis, respectively. The third section highlights
examples of multi-environment analysis for ordinal response
variables, and the fourth section provides examples for
building sparse kernels and for implementing them under a
multi-environment framework for continuous response
variables.

Kernel matrix construction

To illustrate kernel construction, we only use 6 lines and 5
markers of the data set Data_Wheat_2019. RData. These 6
lines and 5 markers are given below.

> XF

M1 M2 M3 M4 M5

GID304660 −0.997 −0.997 −0.997 −0.997 −0.997

GID6175067 0.427 0.427 0.427 0.427 0.427

GID6332122 −0.421 −2.421 −2.421 −2.421 −2.421

GID6341870 0.427 0.427 0.427 0.427 0.427

GID6931427 0.427 0.427 0.427 0.427 0.427

GID7460318 0.427 0.427 0.427 0.427 0.427

To compute the linear kernel using the kernel.construc-
tion(), the function given in Appendix A, we need to use the
following lines of code:

582 A. Montesinos-López et al.

> source(“Kernel_construction.R”)> K.Linear=Kernel_
computation(X=XF,name=“Linear”, degree=NULL, nL=
NULL)> round(K.Linear,3)

GID304660 GID6175067 GID6332122 GID6341870 GID6931427 GID7460318

GID304660 0.994 −0.426 2.414 −0.426 −0.426 −0.426

GID6175067 −0.426 0.182 −1.034 0.182 0.182 0.182

GID6332122 2.414 −1.034 5.861 −1.034 −1.034 −1.034

GID6341870 −0.426 0.182 −1.034 0.182 0.182 0.182

GID6931427 −0.426 0.182 −1.034 0.182 0.182 0.182

GID7460318 −0.426 0.182 −1.034 0.182 0.182 0.182

The newly computed information is the kernel matrix
under a linear kernel. In a similar fashion, to compute the
polynomial, the sigmoid, the Gaussian, exponential, the
AK1 and AKL kernels, we need to specify the corre-
sponding kernel names in Name=“ ” in the Ker-
nel_computation() function. However, for the polynomial
kernel, it is necessary to specify the degree and for the
AKL, the number of hidden layers (deep kernel) in the nL
parameter. The complete code for computing these kernels
is given in Appendix B.

Kernel implementation for continuous response
variables

In this section we provide illustrative examples for single-
environment analysis, multi-environment analysis and
multi-trait analysis.

Single environment data

The base BGLR code for implementing Bayesian kernel
single-environment analysis.

K_Lines=Kernel_computation(X=XF,name=Gaussian,
degree=NULL,nL=NULL)

K_expanded=Z_L%*%K_Lines%*%t(Z_L)
ETA=list(list(model=‘RKHS’, K=K_expanded))
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA, ETA=ETA, nIter = 1e4, burnIn =

1e3, verbose = FALSE)
yp_ts = A$yHat [Pos_tst]

In kernel_computation() it is necessary to specify the
required kernel method to be used, as illustrated in
the previous section. Then, this kernel is expanded to take
into account the replications available in the data set for
each line using the design matrix of lines Z_L. All details
for building this design matrix (Z_L) are given in
Appendix C. Then, a list called ETA is created in which
the expanded kernel is provided in K, and the model is
specified as RKHS. Then in the original response

variable, those observations that belong to the testing set
in each partition are set to NA, to avoid using them in the
training process. In the BGLR() function these NA are
provided in y, such that the response variable with NA
belongs to the testing set, while in ETA, the list that
contains the expanded kernel is provided and the model
RKHS method is specified. Here, we also specify the
number of iterations (nIter), burning (burnIn) and a
logical value (TRUE and FALSE) for printing (or not) the
training process. Finally, the predictions are extracted
with A$yHat and only the predictions for the testing set
are saved in yp_ts.

For the training process we only used one environment
(JBL) of the Data_Wheat_2019.RData data set. The number
of lines in this environment was 30 and some had more than
one replication. A ten-fold cross-validation was imple-
mented using nine for training and one for testing, and the
average of the ten testing folds was reported as the pre-
diction performance. The results are given in Table 1, and
the R code for its implementation is provided in Appendix
C. Table 1 indicates that the best prediction performance
was observed under the AKL kernel that used five hidden
layers (kernel deep), while the worst kernel was the sigmoid
kernel.

Multi-environment data

The BGLR code for implementing Bayesian kernel methods
with an extended predictor (main effects of environment
and genotypes and the G × E term) is provided as:

Z_E=model.matrix(~0+Env,data=Pheno)
dim(Z_E), K.E=Z_E%*%t(Z_E)
K_Lines=Kernel_computation(X=XF,

name=kernel_name[i], degree=2,nL=5)
K_expanded=Z_L%*%K_Lines%*%t(Z_L)
K_GE=K_expanded*K.E

Table 1 Single-environment prediction performance of 7 kernels under
a ten-fold cross-validation with data Data_Wheat_2019.RData.

Kernel MSE SE_MSE Cor SE_Cor Time

Linear 5.279 0.497 0.642 0.048 10.140

Polynomial 4.974 0.587 0.658 0.054 10.510

Sigmoid 5.594 0.492 0.625 0.049 9.370

Gaussian 4.881 0.540 0.668 0.047 12.440

AK1 5.149 0.522 0.651 0.047 10.600

AKL 4.754 0.515 0.678 0.047 9.970

Exponential 4.980 0.521 0.663 0.048 9.780

MSE denotes the mean square error of prediction (SE_MSE id the
standard error of MSE) and Cor is used for the average Pearson’s
correlation (SE_Cor is the standard error of Cor). Time indicates the
implementation time in seconds.

A guide for kernel generalized regression methods for genomic-enabled prediction 583

ETA=list(Env=list(model=‘FIXED’,X=Z_E),Lines=list
(model=‘RKHS’,K=K_expanded),GE=list(mod-
el=‘RKHS’,K=K_GE))

y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA,nIter = 1e4,burnIn =

1e3,verbose = FALSE)
yp_ts = A$yHat [Pos_tst]

The only difference in the code with the single-
environment analysis is that now in the ETA (predictor),
the effects of environment and G×E are specified in addition
to the genotype effects, that is, three terms are included in
the predictor. However, the kernel for lines expanded, takes
into account the incidence matrix of lines, Z_L. Also, a
kernel was created for the G×E that was obtained as the
Hadamard product between the expanded kernel of geno-
types and environments. However, the main effects of
environments are considered fixed effects, using only the
incidence matrix of environments, Z_E. The whole code of
this example is given in Appendix D.

Table 2 shows that in terms of MSE, the best prediction
performance was obtained with the AKL kernel with kernel
deep= 5. However, in terms of Pearson’s correlation, the
best prediction performance was obtained in the poly-
nomial, Gaussian and AKL kernels. It is important to point
out that the worst implementation time was with the AKL
(76.29 s) kernel since for its implementation, we assumed
that the AK1 was already estimated, and its computation
required an iterative process. The R code for reproducing
the results in Table 2 is given in Appendix D.

Multi-trait data

The multi-trait prediction model with the same predictor
(Environment+Genotype+G × E) that was previously
used for the multi-environment example, is similar to that

used for multi-environment analysis since the specification
of the predictor (ETA) is exactly the same. However, the
function used for implementing the multi-trait genome
prediction models is different [now Multitrait()]; other
details of the code are given below. The complete code is
given in Appendix E and the output is given in Table 3.

K_Lines=Kernel_computation(X=XF,
name=kernel_name[i], degree=2,nL=5)

K_expanded=Z_L%*%K_Lines%*%t(Z_L)
K_GE=K_expanded*K.E
ETA=list(Env=list(model=‘FIXED’,
X=Z_E),Lines=list(model=‘RKHS’, K=K_expanded),

GE=list(model=‘RKHS’, K=K_GE))
Pos_tst =PT[,k]
y_NA = data.matrix(y)
y_NA[Pos_tst,] = NA
A1= Multitrait(y = y_NA, ETA=ETA, resCov = list

(type =“UN”, S0=diag(2),df0= 5),
nIter =10000, burnIn = 1000)
Metrics= PC_MM_f(y[Pos_tst,],A1$ETAHat[Pos_tst,],

Env=Pheno$Env[Pos_tst])

The building process of the design matrices and kernels
was the same as the previous example. However, now in
place of using the BGLR() function, which is useful for uni-
trait analysis, we used the Multitrait() function, appropriate
for fitting Bayesian multi-trait models in the BGLR pack-
age. In addition to the ETA and the response variable for the
Multitrait() function, we must also provide the type of
covariance structure, the degrees of freedom (df0) and the
S0, which is usually a diagonal matrix of a dimension equal

Table 2 Multi-environment prediction performance of seven kernels
under a ten-fold cross-validation with data Data_Wheat_2019.RData.

Kernel MSE SE_MSE Cor SE_Cor Time

Linear 2.916 0.240 0.988 0.001 33.560

Polynomial 2.753 0.235 0.989 0.001 36.400

Sigmoid 3.148 0.262 0.987 0.001 35.090

Gaussian 2.723 0.219 0.989 0.001 40.450

AK1 2.819 0.230 0.988 0.001 40.730

AKL 2.670 0.225 0.989 0.001 76.29

Exponential 2.919 0.232 0.988 0.001 31.390

MSE denotes the mean square error of prediction (SE_MSE id the
standard error of MSE) and Cor is used for the average Pearson’s
correlation (SE_Cor is the standard error of Cor). Time indicates the
implementation time in seconds.

Table 3 Multi-trait prediction performance of seven kernels under a
ten-fold cross-validation with data Data_Wheat_2019.RData.

Kernel Trait MSE SE_MSE Cor SE_Cor

Linear DTHD 2.686 0.355 0.848 0.027

Linear GRYLD 0.317 0.038 0.541 0.064

Polynomial DTHD 2.626 0.380 0.850 0.029

Polynomial GRYLD 0.314 0.039 0.544 0.062

Sigmoid DTHD 2.877 0.376 0.837 0.029

Sigmoid GRYLD 0.326 0.038 0.526 0.065

Gaussian DTHD 2.533 0.349 0.855 0.028

Gaussian GRYLD 0.313 0.037 0.549 0.061

AK1 DTHD 2.571 0.345 0.854 0.027

AK1 GRYLD 0.313 0.036 0.550 0.061

AKL DTHD 2.440 0.344 0.859 0.028

AKL GRYLD 0.315 0.036 0.539 0.060

Exponential DTHD 2.551 0.342 0.852 0.028

Exponential GRYLD 0.345 0.041 0.480 0.068

MSE denotes the mean square error of prediction (MSE) and its
standard error (SE_MSE), Cor is used for the average Pearson’s
correlation (Cor) and its standard error (SE_Cor).

584 A. Montesinos-López et al.

to the number of traits being used. Appendix E provides the
whole code for this example.

Table 3 shows that the best prediction performance for
trait DTHD was observed under both metrics (MSE and
Cor) and on the Arc-cosine kernel with kernel deep equal to
5 (AK_L), while under trait GRYLD, the best prediction
performance was shared by two kernels [Gaussian and Arc-
cosine with only one hidden layer (kernel deep)].

Kernel implementation for ordinal response
variables

While the data used for illustrating the implementation of
Bayesian kernel methods with an ordinal response variable
are the same as the previously used data, the discretizing the
response variable was adjusted according to the first (level
1), second (level 2) and third quantile (level 3) in each
environment. The predictor was the same as the one used
for the continuous response under multi-environment ana-
lysis (Environment+Genotypes+G × E). For this reason,
all codes are almost the same as the ones given above for
the multi-environment example with a continuous response
variable, except for the following lines of code:

A=BGLR(y=y_NA, ETA=ETA, response_type=“

ordinal”, nIter = 1e4,burnIn = 1e3, verbose = FALSE)
Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)

The different key components are: (a) response_ty-
pe=“ordinal” that makes BGLR using the machinery of
Bayesian probit regression for ordinal response variables;
(b) Probs=A$probs[Pos_tst,], which extracts the prob-
abilities of each level of the response variable for all the
individuals in the testing set; and (c) yp_ts= apply(Probs,1,
which.max) that transforms the probabilities of each

individual to levels 1, 2 and 3 that are the possible levels of
the original response variable in this situation. The complete
code for reproducing results of Table 4, for Bayesian kernel
regression with ordinal response variables is given in
Appendix F.

Under an ordinal response variable, there are also dif-
ferences in prediction performance between the seven
implemented kernels (Table 4). Under this method, the
Gaussian kernel produced the best prediction performance
in terms of PCCC and Kappa coefficient.

Implementation for sparse kernel methods

First, we will illustrate how to compute the P matrix, which
is needed to compute the Pu1 and Pu2 design matrices
needed in equation (6) to implement approximate kernel
methods. To compute P we will use the code given in
Appendix G. Appendix H contains some examples for
computing the design matrix, P, under seven types of ker-
nels by using the Sparse_Kernel_Construction.R code pro-
vided in Appendix G. Next, we illustrate how to compute
the P, under the Gaussian kernel. Under this method, the XF
matrix was used with only ten rows and all the markers. The
number of columns (sample size) for P was specified as
m= 3, while degree and nL were specified as NULL since
the Gaussian kernel does not require these hyper-
parameters. For this reason we can see in the output that
the resulting P design matrix, whose original size was (10 ×
10), was reduced to 10 × 3, showing that under a Bayesian
Ridge regression model it only three beta coefficients are
needed instead of ten.

source(“Sparse_Kernel_Construction_Appendix_G.R”)
> K.Gaussian1=Sparse_Kernel_Construction(m=3,

X=XF, Name=“Gaussian”, degree=NULL,nL=NULL)
> round(K.Gaussian1,3)

[,1] [,2] [,3]

[1,] −0.597 −0.780 −0.186

[2,] −0.671 0.495 −0.552

[3,] −0.129 −0.004 0.009

[4,] −0.261 −0.016 0.076

[5,] −0.295 −0.047 −0.018

[6,] −0.133 0.023 0.001

[7,] −0.206 −0.054 0.031

[8,] −0.215 −0.056 −0.001

[9,] −0.710 0.188 0.678

[10,] −0.134 −0.028 −0.004

Note that If we use an m value of 5, in the Sparse_-
Kernel_Construction() function, the resulting P matrix will
be of the order 10 × 5, which will reduce the number of beta
coefficients that need to be estimated by 50%.

Table 4 Multi-environment prediction performance of seven kernels
with a ordinal response variable under a ten-fold cross-validation with
data Data_Wheat_2019.RData.

Kernel PCCC SE_PCCC Kappa SE_Kappa Time

Linear 0.671 0.025 0.454 0.044 62.72

Polynomial 0.680 0.026 0.468 0.049 69.98

Sigmoid 0.664 0.025 0.443 0.045 71.25

Gaussian 0.689 0.028 0.483 0.054 72.1

AK1 0.664 0.027 0.441 0.050 79.83

AKL 0.673 0.025 0.450 0.048 65.6

Exponential 0.596 0.035 0.281 0.075 72.76

PCCC denotes the proportion of cases correctly classified (SE_PCCC
is the standard error of PCCC) and Kappa is average Kappa’s
coefficient (SE_Kappa is the standard error of Kappa). Time indicates
the implementation time in seconds.

A guide for kernel generalized regression methods for genomic-enabled prediction 585

It is important to point out that when the value of m is
smaller, the reduction in necessary parameter estimates is
greater, which means a greater gain in computational
resources. Therefore, we suggest choosing the value of
m by cross-validation in such a way as to guarantee a
significant reduction in time of execution of the model
without any significant loss in the prediction accuracy. This
means that a grid with different values of m should be
evaluated and the optimal one obtained by cross validation
should be one that is small enough to not affect the pre-
diction performance with regard to using the whole infor-
mation. Ten-fold cross validation can be used but if a
higher rate of accuracy is required, this should be repeated
s times. Appendix H illustrates how to compute the value
of P for other types of kernels, but in general, only the
name of the required kernel in the Sparse_Kernel_Con-
struction() function must be specified, in addition to the
m value. The key codes for building the P, Pu1, Pu2

matrices and for implementing in BGLR the Bayesian
sparse kernel methods are given as follows:

P_Lines=Sparse_Kernel_Construction(m=mvalues[s],
X=XF,name=kernel_name[i], degree=2, nL=5)

Var0=apply(P_Lines, 2, sd)
pos_varNo0=which(Var0>0)
P_Lines1=P_Lines[,pos_varNo0]
P_expanded=Z_L%*%P_Lines1
P_GE=model.matrix(~0+P_expanded:Env,

data=Pheno)
ETA=list(Env=list(model=‘FIXED’,

X=Z_E),Lines=list(model=‘BRR’, X=P_expanded),
GE=list(model=‘BRR’, X=P_GE))

Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA, nIter = 1e4, burnIn =

1e3, verbose = FALSE)
yp_ts = A$yHat

If we want to implement other members of the Bayesian
alphabet in the model (in the ETA), we only need to replace
BRR with BayesA, BayesB, BayesC or BL for
Bayesian Lasso.

Appendix I gives the complete R code for implementing
sparse Bayesian regression that reproduces the results in
Table 5. For the example, we used the data set Data_-
Toy_EYT.RData, which contains four environments, four
traits (DTHD, DTMT, GY and Height) and 40 observations
in each environment. Traits DTHD, DTMT and Height are
ordinal and GY is continuous. We also provided a genomic
relationship matrix (GRM) of dimension 40 × 40, and the
square root matrix of the GRM was used as input for
building the sparse kernels. For the illustration, we only

used the continuous trait (GY) as the response variable. The
approximate kernels were built using the 40 lines (square
root matrix of the GRM) from which the training set was
built with m= 10, 15, 20, 35 and 40 lines. We implemented

Table 5 Prediction performance in terms of mean square error (MSE)
and its standard error (SE_MSE), as well as Pearson’s correlation and
its standard error (SE_Cor) under seven approximate Gaussian kernel
methods with the method proposed by Cuevas et al. (2020).

m Kernel MSE SE_MSE Cor SE_Cor Time

10 Linear 0.348 0.045 0.908 0.026 13.79

10 Polynomial 0.349 0.044 0.911 0.024 15.98

10 Sigmoid 0.307 0.034 0.922 0.021 16.19

10 Gaussian 0.300 0.029 0.926 0.018 18.52

10 AK1 0.344 0.028 0.915 0.021 16.53

10 AKL 0.314 0.035 0.921 0.020 15.2

10 Exponential 0.336 0.027 0.918 0.018 15.56

15 Linear 0.318 0.036 0.917 0.022 17.72

15 Polynomial 0.344 0.031 0.909 0.021 18.92

15 Sigmoid 0.338 0.035 0.913 0.023 19.13

15 Gaussian 0.308 0.035 0.922 0.021 20.44

15 AK1 0.332 0.034 0.915 0.022 20.14

15 AKL 0.336 0.023 0.919 0.018 21.16

15 Exponential 0.353 0.033 0.912 0.021 19.58

20 Linear 0.316 0.034 0.918 0.021 18.31

20 Polynomial 0.346 0.036 0.910 0.025 18.33

20 Sigmoid 0.281 0.034 0.926 0.021 19.73

20 Gaussian 0.306 0.034 0.924 0.021 15.72

20 AK1 0.345 0.025 0.916 0.020 15.35

20 AKL 0.323 0.028 0.918 0.021 15.25

20 Exponential 0.346 0.035 0.914 0.023 16.64

35 Linear 0.303 0.026 0.924 0.018 19.39

35 Polynomial 0.316 0.027 0.921 0.020 20.35

35 Sigmoid 0.292 0.025 0.926 0.019 22.24

35 Gaussian 0.327 0.027 0.920 0.020 22.91

35 AK1 0.333 0.025 0.918 0.020 23.5

35 AKL 0.324 0.028 0.921 0.019 21.61

35 Exponential 0.330 0.024 0.920 0.020 22.89

40 Linear 0.307 0.026 0.923 0.019 24.03

40 Polynomial 0.326 0.026 0.919 0.020 24.14

40 Sigmoid 0.306 0.026 0.923 0.019 22.25

40 Gaussian 0.322 0.025 0.921 0.019 21.29

40 AK1 0.334 0.024 0.919 0.019 25.25

40 AKL 0.333 0.023 0.920 0.019 23.69

40 Exponential 0.335 0.023 0.919 0.019 20.63

Ten-fold cross-validation was implemented and the prediction
performance was only reported for the testing set. Five values of
training size, m, were implemented: 5, 10, 20, 35 and 40 (all data).
Time reported: the implementation time in seconds. The data set used
for this example was Data_Toy_EYT with trait GY as the response
variable.

586 A. Montesinos-López et al.

seven (linear, polynomial, sigmoid, Gaussian, AK1, AKL
and Exponential) sparse kernels.

Table 5 shows that there are differences in the prediction
performance using different kernels. However, the approx-
imate kernel, even with m= 10, many times outperformed
the prediction performance of the exact kernel (m= 40),
which implies that when the lines are highly correlated even
with a small sample size, m, approximating the kernel is
enough to get decent prediction performance. However, the
time gained by using a sample size, m, is significantly lower
than using the total number of lines, and this gain in
implementation time is more relevant when the number of
lines is very large, as was stated by Cuevas et al. (2020). In
general, Table 5 indicates that the best prediction perfor-
mance in terms of MSE and average Pearson’s correlation
was observed with m= 20. With this data set, only 25% of
the lines (m= 10 lines) is enough to approximate the exact
kernel (with 40 lines) quite well; however, the value of m is
data dependent. It is important to point out that the code
provided in Appendix I can easily be adapted for ordinal
variables since the only requirement is to provide an ordinal
response variable and specify response_type=“ordinal”
inside the BGLR() function. For single-environment ana-
lysis, the only requirement is to provide the term related to
genotypes in the predictor (ETA). Implementation of the
Sparse kernel version under a multi-trait framework is
similar to the uni-trait example since the process for con-
structing the design matrices P, Pu1 and Pu2 is the same.

Discussion

The goal of this study was to provide researchers with a user-
friendly guide for implementing Bayesian kernel methods for
continuous, binary and ordinal response variables in the con-
text of genomic prediction. Seven different types of kernels
were illustrated with real toy data sets since there is empirical
evidence showing that not all kernels perform well in specific
data sets. However, there is also empirical evidence that kernel
methods more frequently outperform conventional linear
machine learning methods when data sets contain complex
non-linear patterns that cannot be captured by linear machine
learning models (Ober et al. 2011).

The most popular kernel classification/regression method is
support vector machine (SVM) since it has a good general-
ization performance in many real-life data sets; in addition,
there are few free parameters to adjust and the architecture of
the learning machine does not need to be found by experi-
mentation. Moreover, all the virtues of kernel methods are not
only valid for SVM, but also for Bayesian kernel methods, as
was illustrated by the examples provided in the results section.
These facts have been supported by many of the publications
on Bayesian kernel methods by Cuevas et al.

(2016, 2017, 2018, 2019 and 2020). In this paper, we illu-
strated the implementation of Bayesian kernel methods by
focusing mainly on some well-known kernel methods (linear,
polynomial, sigmoid, Gaussian, exponential and arc-cosine 1
and arc-cosine L) that frequently outperform the linear kernel.

There are different approaches for capturing non-linear
patterns from input data, such as the so-called reproducing
kernel Hilbert spaces (RKHS) was proposed under a very
friendly framework. RKHS maps the input variables into a
new space, such that the original non-linear pattern is
transformed into a linear one. The power and beauty of
RKHS methods is that their rich structure allows us to
perform inner product operations in a very efficient way,
with complexity unrelated to the dimensionality of the
respective RKHS (Shawe-Taylor and Cristianini 2004).
Additionally, RKHS methods are able to build non-linear
versions of any linear algorithms by replacing their inde-
pendent variables (predictors) with a kernel function, pro-
ducing machines with greater power and better prediction
performance. Although the dimension of such spaces can
even be infinite (Theodoridis 2020), kernels are interpreted
as scalar products in high-dimensional spaces.

Most of the seven kernels studied in this guide have
analytical solutions (linear, polynomial, sigmoid, Gaussian,
AKL, and exponential); however, the AKL requires an
iterative solution. For this reason, the computation of the
AKL kernel is most demanding, and the larger the kernel
deep (number of hidden layers), the longer its computation
time. Although only seven kernel methods were computed,
they possess great versatility and composite kernels can be
built; some can be computed in closed form, while others
require an iterative process. Our illustrative examples show
that kernel methods can also be implemented under the
conventional Bayesian regression framework, and the cur-
rent software for genome-enabled prediction can be used for
implementing kernel Bayesian methods. This is possible
due to a two-step process used to implement Bayesian
kernel methods: (a) the kernel is computed in the first step
and (b) in the second step, this kernel is incorporated into
conventional Bayesian methods for genomic prediction.

The goal of this paper is to facilitate the implementation
of kernel methods, since there is sufficient empirical evi-
dence showing that they are remarkably flexible and exploit
complexity to improve prediction accuracy. Their flexibility
is attributed in part to the fact that they can be implemented
using statistical and machine linear algorithms. In this
guide, the Bayesian linear regression algorithms were used
to implement kernel methods; however, conventional linear
mixed models can also be used for implementing kernel
methods since a two-step process is required for their
implementation (Endelman 2011). Kernel methods can be
implemented in popular machine learning algorithms like
support vector machine, random forest, artificial neural

A guide for kernel generalized regression methods for genomic-enabled prediction 587

networks and deep learning methods, among others. It is
important to point out that kernel methods can be seen as
artificial neural network methods since they work with
transformed inputs, which is equivalent to implementing
one hidden layer, with the kernels equivalent to the acti-
vation function in the hidden layer. Since it requires trans-
forming the original input more than once (kernel deep), the
AKL kernel imitates the deep learning method with regard
to the number of hidden layers. However, AKL kernel, as
pointed out by one reviewer, does not contain learnable
parameters for hidden layers as deep neural networks where
gradients are propagated during optimization. The AKL
kernel is only a recursive application of a deterministic
similarity function.

In the illustrative examples of approximate kernels
provided, we observed that by using the sparse kernels, we
can obtain a relevant reduction in time without a sig-
nificant reduction in prediction accuracy. According to
Cuevas et al. (2020), this method is preferred for very
large data sets where more gain is obtained in the imple-
mentation time. Sparse kernel methods provide promising
tools for large-scale and high-dimensional genomic data
processing. For this reason, while these kernels, based on
data compression ideas, are very promising for very large
data sets, software and more research are still needed to
simultaneously develop new methods and improve
existing ones.

Although kernel methods have advantages and exploit
complexity to improve prediction accuracy, they are unhelpful
at increasing the understanding of the complexity, and as such
it is important to avoid false expectations about these methods.
Nevertheless, although this subject is still very much under
development, these methods are an important tool for machine
learning and applications since they frequently increase pre-
diction accuracy when the patterns in the input data are non-
linear. Kernel methods also promote further improvement in
the scalability of conventional machine learning methods
because of their versatility to work with heterogeneous inputs
since kernel methods guarantee existence and uniqueness, just
like least square methods.

Finally, the given examples are representative of many
types of analyses required for plant breeding for genomic-
enabled prediction: single-environment analysis, multi-
environment analysis and multi-trait analysis with con-
tinuous, binary and ordinal response variables. For this
reason, we believe that this guide will help scientists
implement Bayesian kernel methods using their own data
with slight modifications to the code (as provided). Finally,
since the implementation of the kernels methods was done
in a two-step process, other algorithms like conventional
mixed models, albeit with small modifications, can be used
for their implementation.

Conclusions

This paper provides a guide for implementing kernel
methods for genomic prediction. The R code is provided for
building the kernels (linear, polynomial, sigmoid, Gaussian,
AK1, AKL and exponential) and for implementing exact and
approximate kernel Bayesian methods under a single-
environment, multi-environment and multi-trait framework.
We provided examples for univariate continuous variables,
as well as for binary and ordinal outcomes, whereas for
multivariate variables, an example for only continuous
response variables was illustrated. Here, kernel methods
were implemented using a two-step process where the kernel
was computed in the first step, which was subsequently used
to implement Bayesian methods for genomic prediction in
the second. The approximate kernel methods were imple-
mented only for Bayesian Ridge regression (BRR), but their
implementation is straightforward for BayesA, BayesB,
BayesC and Bayesian Lasso under a univariate framework.
Additionally, the prediction performance and implementa-
tion time of the approximate kernel were compared to exact
kernel (that use all the information) methods, and we
observed that, in terms of prediction performance, approx-
imate kernels methods were very competitive with exact
kernel methods, but there was a significant reduction in
computational resources since the implementation time of
the approximate kernels is considerably low.

Data availability

The two data sets, R file Data_Wheat_2019.RData, and
Data_Toy_EYT.RData can be found at the following link
https://hdl.handle.net/11529/10548532.

Acknowledgements We thank all scientists, field workers, and lab
assistants from National Programs and CIMMYT who collected the
data used in this study. We are thankful for the financial support
provided by the Bill & Melinda Gates Foundation [Accelerating
Genetic Gains in Maize and Wheat for Improved Livelihoods
(AG2MW), BMGF/FCDO, INV-003439], as well USAID projects
[USAID-CIMMYT Wheat/AGGMW, AGG-Maize Supplementary
Project, AGG (Stress Tolerant Maize for Africa), Amend. No. 9 MTO
069033] that generated the CIMMYT wheat data analyzed in this
study. We also acknowledge the financial support provided by the
Foundation for Research Levy on Agricultural Products (FFL) and the
Agricultural Agreement Research Fund (JA) in Norway through NFR
grant 267806 and by the CIMMYT CRP wheat.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

588 A. Montesinos-López et al.

https://hdl.handle.net/11529/10548532

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

Appendix A. Code for computing the linear,
polynomial, sigmoid, Gaussian, AK1, AKL,
and exponential kernels

Kernel_computation=function(X,name, degree, nL){
p=ncol(X)
x1=X
x2=X
d=degree
############Polynomial kernel##################
K.Polynomial=function(x1, x2=x1, gamma=1,

b=0, d=3)
{ (gamma*(as.matrix(x1)%*%t(x2))+b)^d}
############Sigmoid kernel####################
K.Sigmoid=function(x1,x2=x1, gamma=1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
############Gaussian kernel##################
l2norm=function(x){sqrt(sum(x^2))}
K.Gaussian=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1<- as.matrix(x1)), 1:ncol

(x2<- t(x2)),
Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
##########Arc-cosine kernel with 1 hidden layer
K.AK1_Final<-function(x1,x2){
n1<-nrow(x1)
n2<-nrow(x2)
x1tx2<-x1%*%t(x2)
norm1<-sqrt(apply(x1,1,function(x) crossprod(x)))
norm2<-sqrt(apply(x2,1,function(x) crossprod(x)))
costheta = diag(1/norm1)%*%x1tx2%*%diag(1/norm2)
costheta[which(abs(costheta)>1,arr.ind = TRUE)] = 1
theta<-acos(costheta)
normx1×2<-norm1%*%t(norm2)
J = (sin(theta)+(pi-theta)*cos(theta))
AK1 = 1/pi*normx1×2*J
AK1<-AK1/median(AK1)
colnames(AK1)<-rownames(x2)
rownames(AK1)<-rownames(x1)
return(AK1)
}

####Kernel Arc-Cosine with deep=L#########
AK_L_Final<-function(AK1,nL){
n1<-nrow(AK1)
n2<-ncol(AK1)
AKl1 = AK1
for (l in 1:nL){
AKAK<-tcrossprod(diag(AKl1),diag(AKl1))
costheta<-AKl1*(AKAK^(−1/2))
costheta[which(costheta>1,arr.ind = TRUE)] = 1
theta<-acos(costheta)
AKl<-(1/pi)*(AKAK^(1/2))*(sin(theta)+(pi-theta)*cos

(theta))
AKl1 = AKl
}
AKl<-AKl/median(AKl)
rownames(AKl)<-rownames(AK1)
colnames(AKl)<-colnames(AK1)
return(AKl)
}
########Exponencial Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1<- as.matrix(x1)), 1:ncol

(x2<- t(x2)),
Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}
if (name==“Linear”) {
K=X%*%t(X)/p
} else if (name==“Polynomial”) {
K=K.Polynomial(x1=x1, x2=x1, gamma=1/p,

b=0, d=d)
} else if (name==“Sigmoid”) {
K=K.Sigmoid(x1=x1, x2=x1, gamma=1/p, b=0)
}else if (name==“Gaussian”) {
K=K.Gaussian(x1=x1, x2=x1, gamma=1/p)
} else if (name==“AK1”) {
K= K.AK1_Final(x1=x1, x2=x1)
} else if (name==“AKL”) {
AK1=K.AK1_Final(x1=x1, x2=x1)
K=AK_L_Final(AK1=AK1,nL=nL)
} else {
K=K.exponential(x1=x1,x2=x1,gamma=1/p)
}
}

Appendix B. Computation of kernels using
the function given in Appendix A

rm(list=ls())
library(BGLR)
library(BMTME)
load(‘Data_Wheat_2019.RData’,verbose=TRUE)
ls()
#Phenotypic data

A guide for kernel generalized regression methods for genomic-enabled prediction 589

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Markers=scale(Markers_Toy)
head(Markers)
dim(Markers)
colnames(Markers)=paste0(“M”,1:29157)
XF=round(Markers[1:6,1:5],3)
XF
source(“Kernel_construction.R”)
#Marker data
K.Linear=Kernel_computation(X=XF,name=“Linear”,

degree=NULL, nL=NULL)
round(K.Linear,3)
K.Poly=Kernel_computation(X=XF,name=“-

Polynomial”, degree=2,nL=NULL)
round(K.Poly,3)
K.Sigmoid=Kernel_computation(X=XF,name=“-

Sigmoid”, degree=NULL,nL=NULL)
round(K.Sigmoid,3)
K.Gaussian=Kernel_computation(X=XF,name=“-

Gaussian”, degree=NULL,nL=NULL)
round(K.Gaussian,3)
K.AK1=Kernel_computation(X=XF,name=“AK1”,

degree=NULL,nL=NULL)
round(K.AK1,3)
K.AK2=Kernel_computation(X=XF,name=“AKL”,

degree=NULL,nL=2)
round(K.AK2,3)
K.AK15=Kernel_computation(X=XF,name=“AKL”,

degree=NULL,nL=15)
round(K.AK15,3)
K.Exp=Kernel_computation(X=XF,name=“-

exponential”,degree=NULL,nL=NULL)
round(K.Exp,3)

Appendix C. R code for the single
environment under 7 kernels with data
Data_Wheat_2019.RData. Results of Table 1

rm(list=ls())
library(BGLR)
library(BMTME)
load(‘Data_Wheat_2019.RData’,verbose=TRUE)
ls()
#Phenotypic data
Markers=scale(Markers_Toy)
head(Markers)
dim(Markers)
colnames(Markers)=paste0(“M”,1:29157)
XF=Markers[,colSums(!is.na(Markers)) > 0]
dim(XF)
source(“Kernel_construction.R”)
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)

K=Kernel_computation(X=XF,name=kernel_name[1],
degree=2,nL=5)

head(K[1:10,1:10])
unique(Pheno_Toy$Env)
Pheno_JBL=Pheno_Toy[Pheno_Toy$Env==“JBL”,]
row.names(Pheno_JBL)=1:nrow(Pheno_JBL)
dim(Pheno_JBL)
head(Pheno_JBL)
#Marker data
#####design matrix of lines
Z_L=model.matrix(~0+GID,data=Pheno_JBL)
dim(Z_L)
round(K.Exp,3)
n=dim(Pheno_JBL)[1]
y=Pheno_JBL$DTHD
#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
results_all_kernels=data.frame()
results_all=data.frame()
for (i in 1:7) {
i=1
K_Lines=Kernel_computation(X=XF,name=-

kernel_name[i], degree=2,nL=5)
K_expanded=Z_L%*%K_Lines%*%t(Z_L)
ETA=list(list(model=‘RKHS’,K=K_expanded))
Tab1_Metrics= data.frame(PT = 1:K,MSE = NA)
start_time<- proc.time()
for(k in 1:K) {
Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA,nIter = 1e4,burnIn =

1e3,verbose = FALSE)
yp_ts = A$yHat
Tab1_Metrics$MSE[k] = mean((y[Pos_tst]-yp_ts

[Pos_tst])^2)
Tab1_Metrics$Cor[k] = cor(y[Pos_tst],yp_ts[Pos_tst])
}
end_time<- proc.time()
Time=c(end_time[1] - start_time[1])
Metrics=apply(Tab1_Metrics[,-c(1)],2,mean)
Metrics_SE=apply(Tab1_Metrics[,-c(1)],2,sd)/sqrt(K)
results_all=rbind(results_all,data.frame(kernel=k-

ernel_name[i],MSE=Metrics[1],SE_MSE=Metrics_SE[1],
Cor=Metrics[2], SE_Cor=Metrics_SE[2], Time=Time))

}
results_all
write.csv(results_all,file=“results_kernels_single_envir-

onment_analysis_Table1.csv”)

590 A. Montesinos-López et al.

Appendix D. R code for the multi-
environment analysis under 7 kernels with
data Data_Wheat_2019.RData. Results of
Table 2

rm(list=ls())
library(BGLR)
library(BMTME)
load(‘Data_Wheat_2019.RData’,verbose=TRUE)
ls()
#Phenotypic data
Markers=scale(Markers_Toy)
dim(Markers)
colnames(Markers)=paste0(“M”,1:29157)
XF=Markers[,colSums(!is.na(Markers)) > 0]
source(“Kernel_construction.R”)
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
K=Kernel_computation(X=XF,name=kernel_name[1],

degree=2,nL=5)
head(K[1:10,1:10])
unique(Pheno_Toy$Env)
Pheno=Pheno_Toy
row.names(Pheno)=1:nrow(Pheno)
#####design matrix of lines
Z_L=model.matrix(~0+GID,data=Pheno)
Z_E=model.matrix(~0+Env,data=Pheno)
K.E=Z_E%*%t(Z_E)
n=dim(Pheno)[1]
y=Pheno$DTHD
#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
results_all_kernels=data.frame()
results_all=data.frame()
for (i in 1:7) {
i=1
K_Lines=Kernel_computation(X=XF,name=-

kernel_name[i], degree=2,nL=5)
K_expanded=Z_L%*%K_Lines%*%t(Z_L)
K_GE=K_expanded*K.E
ETA=list(Env=list(model=‘FIXED’,X=Z_E),Lines=-

list(model=‘RKHS’,K=K_expanded),GE=list(mod-
el=‘RKHS’,K=K_GE))

Tab1_Metrics= data.frame(PT = 1:K,MSE = NA)
start_time<- proc.time()
for(k in 1:K) {
Pos_tst =PT[,k]
y_NA = y

y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA,nIter = 1e4,burnIn =

1e3,verbose = FALSE)
yp_ts = A$yHat
Tab1_Metrics$MSE[k] = mean((y[Pos_tst]-yp_ts

[Pos_tst])^2)
Tab1_Metrics$Cor[k] = cor(y[Pos_tst],yp_ts[Pos_tst])
}
end_time<- proc.time()
Time=c(end_time[1] - start_time[1])
Metrics=apply(Tab1_Metrics[,-c(1)],2,mean)
Metrics_SE=apply(Tab1_Metrics[,-c(1)],2,sd)/sqrt(K)
results_all=rbind(results_all,data.frame(kernel=k-

ernel_name[i],MSE=Metrics[1],SE_MSE=Metrics_SE[1],
Cor=Metrics[2], SE_Cor=Metrics_SE[2], Time=Time))

}
results_all
write.csv(results_all,file=“results_kernels_multi_envir-

onment_analysis_Table2.csv”)

Appendix E. R code for the multi-trait multi-
environment analysis under seven kernels
with data Data_Wheat_2019.RData. Results
found in Table 3

rm(list=ls())
library(BGLR)
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)
load(‘Data_Wheat_2019.RData’,verbose=TRUE)
ls()
#Phenotypic data
Markers=scale(Markers_Toy)
dim(Markers)
colnames(Markers)=paste0(“M”,1:29157)
XF=Markers[,colSums(!is.na(Markers)) > 0]
dim(XF)
source(“Kernel_construction.R”)
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
K=Kernel_computation(X=XF,name=kernel_name[1],

degree=2,nL=5)
head(K[1:10,1:10])
unique(Pheno_Toy$Env)
Pheno=Pheno_Toy
row.names(Pheno)=1:nrow(Pheno)
dim(Pheno)
head(Pheno)
#####design matrix of lines

A guide for kernel generalized regression methods for genomic-enabled prediction 591

Z_L=model.matrix(~0+GID,data=Pheno)
dim(Z_L)
Z_E=model.matrix(~0+Env,data=Pheno)
dim(Z_E)
K.E=Z_E%*%t(Z_E)
round(K.Exp,3)
n=dim(Pheno)[1]
y=Pheno[,4:5]
head(y)
head(Pheno[,1:6])
#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
results_all_kernels=data.frame()
results_all=data.frame()
source(‘PC_MM.R’)#See below
for (i in 1:7) {
i=1
K_Lines=Kernel_computation(X=XF,name=-

kernel_name[i], degree=2,nL=5)
K_expanded=Z_L%*%K_Lines%*%t(Z_L)
K_GE=K_expanded*K.E
ETA=list(Env=list(model=‘FIXED’,X=Z_E),Lines=-

list(model=‘RKHS’,K=K_expanded),GE=list(mod-
el=‘RKHS’,K=K_GE))

Tab1_Metrics= data.frame()
start_time<- proc.time()
for(k in 1:K) {
#k=1
Pos_tst =PT[,k]
y_NA = data.matrix(y)
y_NA[Pos_tst,] = NA
A1= Multitrait(y = y_NA, ETA=ETA,resCov = list

(type =“UN”, S0=diag(2),df0= 5),
nIter =10000, burnIn = 1000)
Metrics= PC_MM_f(y[Pos_tst,],A1$ETAHat[Pos_tst,],

Env=Pheno$Env[Pos_tst])
Metrics
Tab1_Metrics=rbind(Tab1_Metrics, data.frame(Fold=k,

Trait=Metrics[,1],Env=Metrics[,2],MSE=Metrics[,4],
Cor=Metrics[,3]))

Tab1_Metrics
}
Tab1_Metrics
Summary<- Tab1_Metrics %>%group_by(Trait,Env) %

>%
summarise(SE_MSE=sd(MSE, na.rm = T)/sqrt(n()),

MSE=mean(MSE),SE_Cor = sd(Cor, na.rm = T)/sqrt(n()),
Cor=mean(Cor))

results_all=rbind(results_all,data.frame(kernel=k-
ernel_name[i],Summary))

results_all
}
SummaryT<- results_all %>%group_by(kernel,Trait) %

>%
summarise(MSE=mean(MSE),SE_MSE=mean

(SE_MSE),Cor=mean(Cor),SE_Cor =mean(SE_Cor))
Tab_R = as.data.frame(SummaryT)
Tab_R
write.csv(Tab_R,file=“results_kernels_multi-

trait_Table3.csv”)

Appendix F. R code for the multi-
environment analysis with ordinal response
variable under seven kernels with data
Data_Wheat_2019.RData. Results found in
Table 4

rm(list=ls())
library(BGLR)
library(BMTME)
library(caret)
load(‘Data_Wheat_2019.RData’,verbose=TRUE)
#Phenotypic data
Markers=scale(Markers_Toy)
colnames(Markers)=paste0(“M”,1:29157)
XF=Markers[,colSums(!is.na(Markers)) > 0]
source(“Kernel_construction.R”)
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
K=Kernel_computation(X=XF,name=kernel_name[1],

degree=2,nL=5)
Pheno=Pheno_Toy
row.names(Pheno)=1:nrow(Pheno)
#####design matrix of lines
Z_L=model.matrix(~0+GID,data=Pheno)
Z_E=model.matrix(~0+Env,data=Pheno)
K.E=Z_E%*%t(Z_E)
n=dim(Pheno)[1]
y=Pheno$DTHD
pos_JBL=which(Pheno_Toy$Env==“JBL”)
summary(y[pos_JBL])
y[pos_JBL]=ifelse(y[pos_JBL]<78.09,1,ifelse(y

[pos_JBL]>80.95,3, 2))
y[pos_JBL]
pos_LDH=which(Pheno_Toy$Env==“LDH”)
y[pos_LDH]=ifelse(y[pos_LDH]<102.20,1,ifelse(y

[pos_LDH]>105.99,3, 2))
y[pos_LDH]
pos_PUS=which(Pheno_Toy$Env==“PUS”)

592 A. Montesinos-López et al.

y[pos_PUS]=ifelse(y[pos_PUS]<82.97,1,ifelse(y[pos_-
PUS]>89.48,3, 2))

y[pos_PUS]
#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
results_all_kernels=data.frame()
results_all=data.frame()
for (i in 1:7) {
K_Lines=Kernel_computation(X=XF,name=-

kernel_name[i], degree=2,nL=5)
K_expanded=Z_L%*%K_Lines%*%t(Z_L)
K_GE=K_expanded*K.E
ETA=list(Env=list(model=‘FIXED’,X=Z_E),Lines=-

list(model=‘RKHS’,K=K_expanded),GE=list(mod-
el=‘RKHS’,K=K_GE))

Tab1_Metrics= data.frame(PT = 1:K,PCCC = NA,
Kappa=NA)

start_time<- proc.time()
for(k in 1:K) {
Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA,response_type=“or-

dinal”, nIter = 1e4,burnIn = 1e3,verbose = FALSE)
Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)
CM=confusionMatrix(as.factor(yp_ts),as.factor(y

[Pos_tst]))
Tab1_Metrics$PCCC[k] = 1-mean(y[Pos_tst]!=yp_ts)
Tab1_Metrics$Kappa[k]=c(CM$overall[2])
}
end_time<- proc.time()
Time=c(end_time[1] - start_time[1])
Metrics=apply(Tab1_Metrics[,-c(1)],2,mean)
Metrics_SE=apply(Tab1_Metrics[,-c(1)],2,sd)/sqrt(K)
results_all=rbind(results_all,data.frame(kernel=k-

ernel_name[i],PCC=Metrics[1],SE_PCCC=Metrics_SE[1],
Kappa=Metrics[2], SE_Kappa=Metrics_SE[2], Time=Time))

}
results_all
write.csv(results_all,file=“results_kernels_multi_envir-

onment_analysis_Ordinal_Table4.csv”)

Appendix G. Code for computing sparse
kernels

Sparse_Kernel_Construction=function(m,X,name,degree,
nL){

degree=degree
nl=nL
m=m
XF=X
p=ncol(XF)
pos_m=sample(1:nrow(XF),m)
X_m=XF[pos_m,]
dim(X_m)
########Gaussian Kernel function############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1<- as.matrix(x1)), 1:ncol

(x2<- t(x2)),
Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0,

d=degree)
{ (gamma*(as.matrix(x1)%*%t(x2))+b)^d}
########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
########Exponencial Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1<- as.matrix(x1)), 1:ncol

(x2<- t(x2)),
Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}
############Arcosine kernel with deep=1#######
K.AK1_Final<-function(x1,x2){
n1<-nrow(x1)
n2<-nrow(x2)
x1tx2<-x1%*%t(x2)
norm1<-sqrt(apply(x1,1,function(x) crossprod(x)))
norm2<-sqrt(apply(x2,1,function(x) crossprod(x)))
costheta = diag(1/norm1)%*%x1tx2%*%diag(1/norm2)
costheta[which(abs(costheta)>1,arr.ind = TRUE)] = 1
theta<-acos(costheta)
normx1×2<-norm1%*%t(norm2)
J = (sin(theta)+(pi-theta)*cos(theta))
AK1 = 1/pi*normx1×2*J
AK1<-AK1/median(AK1)
colnames(AK1)<-rownames(x2)
rownames(AK1)<-rownames(x1)
return(AK1)
}
####Kernel Arc-Cosine with deep=L#####
diagAK_f<-function(dAK1)
{
AKAK = dAK1^2
costheta = dAK1*AKAK^(−1/2)
costheta[which(costheta>1,arr.ind = TRUE)] = 1
theta = acos(costheta)
AKl = (1/pi)*(AKAK^(1/2))*(sin(theta)+(pi-theta)*cos

(theta))

A guide for kernel generalized regression methods for genomic-enabled prediction 593

AKl
AKl<-AKl/median(AKl)
}
AK_L_Final<-function(AK1,dAK1,nl){
n1<-nrow(AK1)
n2<-ncol(AK1)
AKl1 = AK1
for (l in 1:nl){
AKAK<-tcrossprod(dAK1,diag(AKl1))
costheta<-AKl1*(AKAK^(−1/2))
costheta[which(costheta>1,arr.ind = TRUE)] = 1
theta<-acos(costheta)
AKl<-(1/pi)*(AKAK^(1/2))*(sin(theta)+(pi-theta)*cos

(theta))
dAKl = diagAK_f(dAK1)
AKl1 = AKl
dAK1 = dAKl
}
AKl<-AKl/median(AKl)
rownames(AKl)<-rownames(AK1)
colnames(AKl)<-colnames(AK1)
return(AKl)
}
AK_ALL=K.AK1_Final(x1=XF,x2=XF)
AK11=K.AK1_Final(x1=XF,x2=X_m)
AKL2=AK_L_Final(AK1=AK11,dAK1=diag

(AK_ALL),nl=5)
dim(AKL2)
####Step 1 compute K_m###############
if (name==“Linear”) {
K_m=X_m%*%t(X_m)/p
######Step 2 comput K_n_m###########
K_n_m=XF%*%t(X_m)/p
} else if (name==“Polynomial”) {
K_m=K.polynomial(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 comput K_n_m###########
K_n_m=K.polynomial(x1=XF,x2=X_m,gamma=1/p)
} else if (name==“Sigmoid”) {
K_m=K.sigmoid(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 comput K_n_m###########
K_n_m=K.sigmoid(x1=XF,x2=X_m,gamma=1/p)
}else if (name==“Gaussian”) {
K_m=K.radial(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 comput K_n_m###########
K_n_m=K.radial(x1=XF,x2=X_m,gamma=1/p)
} else if (name==“AK”) {
K_m=K.AK1_Final(x1=X_m,x2=X_m)
######Step 2 comput K_n_m###########
K_nm1=K.AK1_Final(x1=XF,x2=X_m)
K_all=K.AK1_Final(x1=XF,x2=XF)
K_n_m=AK_L_Final(AK1=K_nm1,dAK1=diag

(K_all),nl=nl)
} else {

K_m=K.exponential(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 comput K_n_m###########
K_n_m=K.exponential(x1=XF,x2=X_m,gamma=1/p)
}
######Step 3 compute Eigen value decomposition of

K_m######
EVD_K_m=eigen(K_m)
####Eigenvectors
U=EVD_K_m$vectors
###Eigenvalues###
S=EVD_K_m$values
S[which(S<0)]=0
####Square root of the inverse of eigenvelues #####
S_0.5_Inv=sqrt(1/S)
#####Diagonal matrix of square root of inverse of

ingenvalues###
S_mat_Inv=diag(S_0.5_Inv)
######Computing matrix P
P=K_n_m%*%U%*%S_mat_Inv
return(P)}

Appendix H. Illustration of the computation
of the design matrix to approximate kernels

m(list=ls())
library(BGLR)
library(BMTME)
load(‘Data_Wheat_2019.RData’,verbose=TRUE)
ls()
#Phenotypic data
Markers=scale(Markers_Toy)
colnames(Markers)=paste0(“M”,1:29157)
var=apply(Markers,2,var)
pos_No_0=which(var>0)
Markers=Markers[,pos_No_0]
XF=round(Markers[1:10,],3)
dim(XF)
source(“Sparse_Kernel_Construction.R”)
K.Gaussian1=Sparse_Kernel_Construction(m=3,

X=XF,name=“Gaussian”, degree=NULL,nL=NULL)
round(K.Gaussian1,3)
K.Gaussian2=Sparse_Kernel_Construction(m=5,

X=XF,name=“Gaussian”, degree=NULL,nL=NULL)
round(K.Gaussian2,3)
K.Gaussian3=Sparse_Kernel_Construction(m=7,

X=XF,name=“Gaussian”, degree=NULL,nL=NULL)
round(K.Gaussian3,3)
########Computation of P for other kernels######
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
K.AKL=Sparse_Kernel_Construction(m=7,X=XF,

name=kernel_name[6], degree=NULL,nL=5)

594 A. Montesinos-López et al.

round(K.AKL,3)

Appendix I. Example that illustrate the
implementation of approximate kernels
under seven kernels

rm(list=ls())
library(BGLR)
library(BMTME)
load(‘Data_Toy_EYT.RData’,verbose=TRUE)
ls()
XF=t(chol(G_Toy_EYT))
source(“Sparse_Kernel_Construction_Appendix_G.R”)
Pheno=Pheno_Toy_EYT
row.names(Pheno)=1:nrow(Pheno)
#####design matrix of lines
Z_L=model.matrix(~0+GID,data=Pheno)
Z_E=model.matrix(~0+Env,data=Pheno)
n=dim(Pheno)[1]
y=Pheno$GY
head(Pheno)
#Number of random partitions
K=10
set.seed(3)
PT = replicate(K,sample(n,0.10*n))
kernel_name=c(“Linear”,“Polynomial”, “Sigmoid”,

“Gaussian”, “AK1”, “AKL”,“Exponential”)
results_all_m=data.frame()
mvalues=c(10, 15, 20, 35, 40)
for (s in 1:5){
results_all=data.frame()
for (i in 1:7) {
P_Lines=Sparse_Kernel_Construction(m=mvalues[s],

X=XF,name=kernel_name[i], degree=2,nL=5)
Var0=apply(P_Lines,2,sd)
pos_varNo0=which(Var0>0)
P_Lines1=P_Lines[,pos_varNo0]
P_expanded=Z_L%*%P_Lines1
P_GE=model.matrix(~0+P_expanded:Env,

data=Pheno)
ETA=list(Env=list(model=‘FIXED’,X=Z_E),Lines=-

list(model=‘BRR’,X=P_expanded),GE=list(mod-
el=‘BRR’,X=P_GE))

Tab1_Metrics= data.frame(PT = 1:K,MSE = NA)
start_time<- proc.time()
for(k in 1:K) {
Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA,nIter = 1e4,burnIn =

1e3,verbose = FALSE)
yp_ts = A$yHat

Tab1_Metrics$MSE[k] = mean((y[Pos_tst]-yp_ts
[Pos_tst])^2)

Tab1_Metrics$Cor[k] = cor(y[Pos_tst],yp_ts[Pos_tst])
}
end_time<- proc.time()
Time=c(end_time[1] - start_time[1])
Metrics=apply(Tab1_Metrics[,-c(1)],2,mean)
Metrics_SE=apply(Tab1_Metrics[,-c(1)],2,sd)/sqrt(K)
results_all=rbind(results_all,data.frame(kernel=k-

ernel_name[i],MSE=Metrics[1],SE_MSE=Metrics_SE[1],
Cor=Metrics[2], SE_Cor=Metrics_SE[2], Time=Time))

}
results_all
results_all_m=rbind(results_all_m,data.frame(m=mva-

lues[s],results_all))
}
results_all_m
write.csv(results_all_m,file=“r-

esults_Sparse_kernels_multi_environment_analysis_Tabl-
e5.csv”)

References

Buil A, Brown AA, Lappalainen T, Viñuela A, Davies MN, Zheng HF
et al. (2015) Gene-gene and gene-environment interactions
detected by transcriptome sequence analysis in twins. Nat Genet
47:88–91

Cho Y, Saul LK (2009) Kernel methods for deep learning. NIPS’09
Proceedings of the 22nd International Conference on Neural
Information Processing Systems, 342–350

Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and
statistical methods to detect it in humans. Hum Mol Genet
11:2463–2468

Cordell HJ (2009) Detecting gene-gene interactions that underlie
human diseases. Nat Rev Genet 10:392–404

Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL
et al. (2010) Prediction of genetic values of quantitative traits in
plant breeding using pedigree and molecular markers. Genetics
186:713–724

Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P,
de los Campos G et al. (2016) Genomic prediction of genotype ×
environment interaction kernel regression models. Plant Genome
9(3):1. 20

Cuevas J, Crossa J, Montesinos-López OA, Burgueño J, Pérez-
Rodríguez P, de los Campos G (2017) Bayesian genomic pre-
diction with genotype × environment kernel models. G3: Genes|
Genomes|Genet 7(1):41–53

Cuevas J, Granato I, Fritsche-Neto R, Montesinos-Lopez OA, Bur-
gueño J, Bandeira e Sousa M et al. (2018) Genomic-enabled
prediction kernel models with random intercepts for multi-
environment trials. Genes, Genomes Genet 8(4):1347–1365

Cuevas J, Montesinos-López OA, Juliana P, Guzmán C, Pérez-
Rodríguez P, González-Bucio J et al. (2019) Deep kernel for
genomic and near infrared predictions in multi-environment
breeding trials. G3-Genes Genomes Genet 9(9):2913–2924

Cuevas J, Montesinos-López OA, Martini JWR, Pérez-Rodríguez P,
Lillemo M, Crossa J (2020) Approximate genome-based kernel
models for large data sets including main effects and interactions.
Front Genet 11:567757

A guide for kernel generalized regression methods for genomic-enabled prediction 595

Da Y, Wang C, Wang S, Hu G (2014) Mixed model methods for
genomic prediction and variance component estimation of additive
and dominance effects using SNP markers. PLoS One 9:e87666

de los Campos G, Gianola D, Rosa GJ, Weigel KA, Crossa J (2010)
Semi-parametric genomic-enabled prediction of genetic values
using reproducing kernel Hilbert spaces methods. Genet Res
92:295–308

Endelman JB (2011) Ridge regression and other kernels for genomic
selection with R package rrBLUP. Plant Genome 4:250–255

Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction
of genetic value with semi parametric procedures. Genetics
173:1761–1776

Gianola D, van Kaam JBCHM (2008) Reproducing kernel Hilbert
spaces regression methods for genomic assisted prediction of
quantitative traits. Genetics 178:2289–2303

Golan D, Rosset S (2014) Effective genetic-risk prediction using
mixed models. Am J Hum Genet 95:383–393

González-Camacho JM, Ornella L, Pérez-Rodríguez P, Gianola D,
Dreisigacker S, Crossa J (2018) Applications of machine learning
methods to genomic selection in breeding wheat for rust resis-
tance. Plant Genome 11(2):1–15

Hemani G, Shakhbazov K, Westra HJ, Esko T, Henders AK, McRae
AF et al. (2014) Detection and replication of epistasis influencing
transcription in humans. Nature 508:249–253

Henderson CR (1985) Best linear unbiased prediction of nonadditive
genetic merits. J Anim Sci 60:111–117

Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection.
Genetics 201:759–768

Khaki S, Wang L (2019) Crop yield prediction using deep neural
networks. Front Plant Sci 2019(10):621

Lehner B (2011) Molecular mechanisms of epistasis within and
between genes. Trends Genet 27:323–331

Long N, Gianola D, Rosa GJ, Weigel KA, Kranis A, González- Recio
O (2010) Radial basis function regression methods for predicting
quantitative traits using SNP markers. Genet Res 92:209–225

Ma W, Qiu Z, Song J, Li J, Cheng Q, Zhai J et al. (2018) A deep
convolutional neural network approach for predicting phenotypes
from genotypes. Planta 248:1307–1318

Ma R, Dicker LH (2019) The mahalanobis kernel for heritability
estimation in genome-wide association studies: fixed-effects and
random-effects methods. arXiv Prepr arXiv 1901:02936

Martini JWR, Toledo FH, Crossa J (2020) On the approximation of
interaction effect models by Hadamard powers of the additive
genomic relationship. Theor Popul Biol 132(2020):16–23

Mathew B, Leon J, Sillanpää MJ (2018) A novel linkage-
disequilibrium corrected genomic relationship matrix for SNP-
heritability estimation and genomic prediction. Heredity
120:356–368

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total
genetic value using genome‐wide dense marker maps. Genetics
157:1819–1829

Moore JH, Williams SM (2009) Epistasis and its implications for
personal genetics. Am J Hum Genet 85:309–320

Morota G, Koyama M, Rosa GJM, Weigel KA, Gianola D (2013)
Predicting complex traits using a diffusion kernel on genetic
markers with an application to dairy cattle and wheat data. Genet
Sel Evol 45:17

Morota G, Boddhireddy P, Vukasinovic N, Gianola D, Denise S
(2014) Kernel-based variance component estimation and whole-
genome prediction of pre-corrected phenotypes and progeny tests
for dairy cow health traits. Front Genet 5:56

Ober U, Erbe M, Long N, Porcu E, Schlather M, Simianer H (2011)
Predicting genetic values: a kernel-based best linear unbiased
prediction with genomic data. Genetics 188:695–708

Pérez-Rodríguez P, de los Campos G (2014) Genome-wide regression
& prediction with the BGLR statistical package. Genetics
198:483–495

R Core Team (2020) R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna.
Austria, http://www.R-project.org/

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern
analysis. University Press, Cambridge, UK

Theodoridis S (2020) Machine learning. A Bayesian and optimization
perspective. Academic Press, London, United Kingdom

Tusell L, Pérez-Rodríguez P, Forni S, Wu X-L, Gianola D (2013)
Genome-enabled methods for predicting litter size in pigs: a
comparison. Animal 7:1739–1749

Waldmann P (2018) Approximate Bayesian neural networks in
genomic prediction. Genet Selection Evol 50:70

Waldmann P, Pfeiffer C, Mészáros G (2020) Sparse convolutional
neural networks for genome-wide prediction. Front Genet
11:25

Wellmann R, Bennewitz J (2012) Bayesian models with dominance
effects for genomic evaluation of quantitative traits. Genet Res
94:21–37

Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of
missing heritability: genetic interactions create phantom herit-
ability. Proc Natl Acad Sci USA 109:1193–1198

596 A. Montesinos-López et al.

http://www.R-project.org/

	A guide for kernel generalized regression methods for genomic-enabled prediction
	Abstract
	Introduction
	Material and methods
	Data sets and data availability
	Wheat data set
	EYT data set
	Kernel functions
	Linear kernel
	Polynomial kernel
	Sigmoidal kernel
	Gaussian kernel
	Exponential kernel
	Arc-cosine kernel with 1 hidden layer (AK1)
	Sparse kernel under a predictor with Environment + Genotype + Genotype × Environment interaction
	Evaluation of prediction performance

	Results
	Kernel matrix construction
	Kernel implementation for continuous response variables
	Single environment data
	Multi-environment data
	Multi-trait data
	Kernel implementation for ordinal response variables
	Implementation for sparse kernel methods

	Discussion
	Conclusions
	Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Acknowledgements
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	ACKNOWLEDGMENTS
	Appendix A. Code for computing the linear, polynomial, sigmoid, Gaussian, AK1, AKL, and exponential kernels
	Appendix B. Computation of kernels using the function given in Appendix A
	Appendix C. R code for the single environment under 7 kernels with data DataWheat2019.RData. Results of Table 1
	Appendix D. R code for the multi-environment analysis under 7 kernels with data DataWheat2019.RData. Results of Table 2
	Appendix E. R code for the multi-trait multi-environment analysis under seven kernels with data DataWheat2019.RData. Results found in Table 3
	Appendix F. R code for the multi-environment analysis with ordinal response variable under seven kernels with data DataWheat2019.RData. Results found in Table 4
	Appendix G. Code for computing sparse kernels
	Appendix H. Illustration of the computation of the design matrix to approximate kernels
	Appendix I. Example that illustrate the implementation of approximate kernels under seven kernels
	References

