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In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes
still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next
generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to
identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity
tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse
genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
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INTRODUCTION
Among the food crops, cereals including rice (Oryza sativa), wheat
(Triticum aestivum), maize (Zea mays), barley (Hordeum vulgare),
pearl millet (Pennisetum glaucum), and sorghum (Sorghum bicolor),
and legumes including chickpea (Cicer arietinum), pigeon pea
(Cajanus cajan), cowpea (Vigna unguiculata), pea (Pisum sativum),
common bean (Phaseolus vulgaris), faba bean (Vicia faba), soybean
(Glycine max), groundnut (Arachis hypogaea), and lentil (Lens
culinaris) are major sources of energy, carbohydrates, proteins, and
fibers in the human diet. Cereals and legumes contribute globally
26 and 9%, respectively to total human food (1271.4 Mt) (Dwivedi
et al. 2018). Legume crops like groundnut and soybean are also
main sources of edible oil. As the world population reaches ~9.8
billion by 2050 (Nawaz and Chung 2020), these crops are going to
be the main food sources to meet the expected demand of a
growing population (FAO 2009). However, global warming is
becoming a threat to agriculture and food security (Nawaz and
Chung 2020), and rising global temperatures are showing their
visible negative impact on crop yield (Arora 2019). Changes in the
current climatic conditions are impacting crop growth and yield
due to increasing episodes of drought, heat, and water logging,
infestations of insect-pests, diseases, weed prevalence, and a
decreasing population of pollinating insects (Myers et al. 2017).
Also, a decline in the nutritional quality of foods is leading to
adverse impacts on human and animal health (Dwivedi et al.
2013). Taking these into consideration, emphasis is being given to
developing nutritionally rich and climate-resilient cultivars of
cereals and legumes to secure food and the nutritional demand
for an ever-increasing world population.
Gene(s) determine a phenotype of an individual and serve as a

unit of heredity that is/are responsible to transfer that phenotype
from one generation to another generation. Therefore, functional
knowledge of genes is essential to breeding nutritionally dense

and climate-resilient cultivars for sustaining nutritional value and
crop yield under changing environments. In the last century,
considerable genetic advances were made to identify genes,
which accounted for phenotypic variation in individuals. The
advances in next-generation sequencing (NGS) resulted in the
availability of whole-genome sequences of many crop plants
(Türktaş et al. 2015; Chen et al. 2011). This revolutionized genetic
and genomic research and made available many genes but with
unknown functions. Development of cis-/transgenic plants with a
cloned/edited gene is one way to know the function of a particular
gene. Cloned genes can be inserted into plant using various
delivery mechanisms. If the cloned gene(s) is/are inserted into a
sexually compatible plant species, the result is cisgenic. If the
cloned gene is inserted into a sexually incompatible plant species,
the result is transgenic, i.e., a foreign gene has been inserted.
However, expression of a cloned gene in the background of
transgenic plants is a major challenge (Kooter et al. 1999; Fagard
and Vaucheret 2000; Li et al. 2009). The use of conventional
forward genetic approach is also very difficult and time-
consuming because it requires a series of mutants. Reverse
genetics emerged as a complementary approach to forward
genetics to decipher the unknown function of a gene sequence. In
this approach, an available nucleotide sequence of a gene having
an unknown function is used either to modify the function of the
similar gene(s) in plants, which results in a change in the
phenotype of transgenic plants or to associate the gene sequence
with a mutant phenotype. This approach can also determine the
function of a gene family besides individual genes (Ahringer
2006). Consequently, mutant populations are not needed to know
the function of gene(s). The reverse genetic approach is more
useful to know the function(s) of genes controlling agronomically
important traits than the forward genetic approach. Identification
of such genes helps to manipulate the plant phenotype in
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desirable directions following marker-assisted breeding. During
the last few years, significant research has been made to use
reverse genetic approaches for functional characterization of
genes and several review articles have been published, which
mostly focused on (i) a specific approach of reverse genetics
(Tierney and Lamour 2005; Balyan et al. 2008; Barley and Wang
2008; Gilchrist and Haughn 2010; Saurabh et al. 2014; Borrelli et al.
2018; Das et al. 2018), (ii) use of reverse genetics in a specific crop
(Slade et al. 2005; Caldwell et al. 2004; Dalmais et al. 2008; Uauy
et al. 2009), (iii) challenges of using reverse genetics in polyploid
plants species (Fitzgerald et al. 2012), and (iv) reverse genetics for
functional genomics (Bouchez and Höfte 1998). However, different
reverse genetic approaches have been used to understand the
function of genes that controlled traits related to biotic and abiotic
stress resistance/tolerance, metabolic/biochemical function, and
agronomic performance, and exploited these genes in breeding
programs to develop nutrient-rich and climate resilient cereal and
legume crops. This review article provides information on (i)
reverse genetic approaches used in functional characterization of
unknown genes, (ii) use of functionally characterized genes in
breeding, and (iii) future prospects of this technology alone or in
combination with others in addressing the projected food
demands of a growing human population under varying climate
changes to develop nutrient-rich and climate-resilient cultivars of
cereals and legumes.

AN OVERVIEW OF REVERSE GENETIC APPROACHES
Reverse genetic approaches use mutant populations, which are
generated either from mutations in specific or random genomic
regions, to discover the function of a gene (Meng et al. 2017). An
overview of different reverse genetic approaches is presented in
Fig. 1. Approaches that target specific genomic regions include
genome editing by homologous recombination [e.g., site-specific
recombination using site-specific recombinases (SSRs)] and by
site-directed mutagenesis using zinc-finger nucleases (ZFN),
transcription activator-like effector nucleases (TALENs), CRISPR-
Cpf1 and CRISPR-Cas9] followed by homologous recombination
(HR), non-homologous end joining (NHEJ) DNA repair systems,
gene silencing [e.g., RNA interference (RNAi) and virus-induced
gene silencing (VIGS)], and ectopic overexpression (Meng et al.
2017). These approaches make changes in the targeted gene
under study leading to a series of mutant lines having different
phenotypes. Efforts have also been made to develop a site-specific
recombination system more useful for studying the expression of
the targeted gene(s) in wheat and barley through a heat shock of
38 °C (Harrington et al. 2020).
Chemical mutagenesis-based targeting induced local lesions in

genome (TILLING), fast neutron based Deleteagene, and inser-
tional mutagenesis using transposable element/T-DNA are
approaches of reverse genetics that target random areas of the
genome leading to sequence variation and generating of mutant
populations, which are used to associate allelic variation of a
target gene (Agarwal et al. 2013; Meng et al. 2017). Next-
generation sequencing (NGS) has also facilitated screening for the
presence of genome-wide induced mutations in targeted genes
using TILLING populations (Table 1). This approach is known as
TILLING-by-Sequencing+ (TbyS+), which has been used to
identify mutations in genes controlling stress resistance in peanut
(Guo et al. 2015) and fatty acid biosynthesis pathway in soybean
(Guo et al. 2015; Lakhssassi et al. 2021). Similarly, TbyS has been
used to identify the role of GIGANTEA (GI), RAMOSUS (RMS), and
TERMINAL FLOWER1 (TFL1) genes controlling flowering and there-
fore alter plant architecture of mungbean (Varadaraju et al. 2021).
TILLING technology holds new prospects to clone genes for
disease resistance and abiotic stress tolerance in cereal crops
under current scenario of climate change (Bettgenhaeuser and
Krattinge 2019). Insertional mutagenesis has been used in

Medicago trancatula, a model legume species, in which a MADS-
box gene mutated through the insertion of Tnt1 retrotransposon
leading to identification of a mutant line mtpim. This mutant had
mutated sequences for inflorescence architecture and flower
development in M. trancatula (Benlloch et al. 2006). The Tnt1, LTR-
retrotransposon cloned from tobacco (Nicotiana tabacum) (Grand-
bastien et al. 1989), has widely been utilized to develop insertion
populations and gene tagging in many plant species. In soybean,
stable and preferential insertion of Tnt1 into the protein-coding
regions of 27 independent transgenic lines suggested that it can
be used at large scale for insertional mutagenesis (Cui et al. 2013).
In another study, insertion of mmPing20F activation tag led to
overexpression of the nearby soybean genes. These activation
tags produced more phenotypes, which became useful resources
to discover the function of genes (Johnson et al. 2021). In cereals,
insertional mutagenesis through T-DNA, activator/dissociation (Ac/
Ds) insertions, transposons, or retrotransposons has been used to
generate mutant libraries that allow functional characterization of
several genes (Ram et al. 2019; Kim et al. 2018a). A collection of
T-DNA insertion mutant lines designated as Rice Functional
Genomic Express Database i.e., RiceGE has been developed in
rice (http://signal.salk.edu/cgi-bin/RiceGE/). The RiceGE database
has been used to elucidate the function of [OsHKT1;4 (high-affinity
K+ transporter 1;4)]; a gene responsible for salt tolerance (Oda
et al. 2018). In maize, a mutant population has been generated
through insertion of a Mutator (Mu) in the background of inbred
line B73 (Table 2). This mutant population, which is known as
BonnMu has been used for functional analysis of genes in maize
(Marcon et al. 2020).
These reverse genetic approaches follow three primary ways to

identify the function of gene(s): (i) knocking out/altering/silencing
the target gene(s) leading to the development of mutants with
altered phenotypes (e.g., RNAi and VIGS and homologous
recombination), (ii) functional analysis of target candidate gene
(s) through expression in transforming species (e.g., ectopic
expression/overexpression), and (iii) screening the target gene(s)
in the mutant populations developed by random disruption of
genes through mutagens or T-DNA/TE (TILLING, insertional
mutagenesis). Further categories can be separately grouped on
the basis of a requirement of genetic transformation to study the
function of gene(s). All these reverse genetic approaches cannot
be used widely in crop plants including cereals and legumes
mainly due to disadvantages associated with each approach like
unavailability of efficient genetic transformation system (except in
model plants like Arabidopsis) and mutant populations, low
efficiency, low throughput and risk of off-target effects, unstable
phenotype or lethal/sterile phenotype, and complexity of large/
polyploid genomes (Aklilu 2021).

FUNCTIONAL CHARACTERIZATION OF GENES
During the past few years, efforts have been made to identify the
function of genes using different approaches of reverse genetics.
These genes showed their functional association with different
nutritional, disease and insect-pest resistance, adaptive traits, and
metabolic, biochemical, and physiologic traits responsible for
agronomic performance and hence paved the way to breed
nutrient-rich and climate-resilient cultivars in cereal and legume
crops. These have been comprehensively discussed in the
following sub-sections.

IDENTIFICATION OF GENES CONTROLLING DISEASE
RESISTANCE
Different reverse genetic methods have been used to identify
genes that control disease resistance in cereals and legumes
(Table 3). The genome editing approach of reverse genetics has
been used widely to explain the function of genes controlling
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disease resistance in cereal crops. For example, in rice, editing of
eIF4G gene resulted in resistance to tungro spherical virus (RTSV)
(Macovei et al. 2018). Editing of TaMLO-A1 gene significantly
increased resistance to powdery mildew in bread wheat (Wang
et al. 2014a). In another study, editing of OsSEC3A gene using
CRISPR-Cas9 technology gave a dwarf stature and lesion-mimic
phenotype. The mutant phenotype generated after editing of this
gene contained higher levels of salicylic acid (SA) and an
improved level of resistance towards the fungal pathogen causing
blast disease (Ma et al. 2018). Contrastingly, transgenic plants
having mutated ethylene responsive factor OsERF922 through
CRISPR-Cas9 editing had no changes in phenotypes related to
agronomic traits. However, these mutated transgenic plants had a
reduced number of blast lesions at the seedling and tillering
stages (Wang et al. 2016a; Borrelli et al. 2018). Thus, the CRISPR-
Cas9 system of genome editing demonstrated a strong and
beneficial impact on the development of improved cultivars
having resistance to fungal diseases. In rice, a mutant population
generated after editing the OsSWEET13 gene using CRISPR-Cas9
has been used to identify mutant plant(s) having resistance to
bacterial blight disease (Zhou et al. 2015). This gene caused
susceptibility and encoded a plant-pathogen interacting sucrose
transporter. Expression of OsSWEET13 gene in the host plant is
controlled by an effector protein PthXo2 of blight disease
pathogen (i.e. Xanthomonas oryzae). However, an earlier study

identified OsSWEET14 gene for susceptibility to bacterial blight
disease; a mutation in this gene prevented the binding of effector
protein with OsSWEET14 that made the rice plant resistant to
blight disease (Li et al. 2012a). Recently editing of this gene
through CRISPR-Cas9 showed its function as a sucrose-efflux
transporter causing bacterial blight resistance in rice (Zeng et al.
2020). A null mutation in OsSWEET13 also expanded the under-
standing of PthXo2-based disease susceptibility in rice and null
mutants were found to be resistant to bacterial blight disease
(Zhou et al. 2015). Further genome editing strategies for multi-
plexed recessive resistance using a combination of the major
effectors and other resistance (R) genes will be the next step to
achieve bacterial blight resistance.
VIGS was used to confirm the requirement for Sgt1, Rar1, and

Hsp90 genes in the Mla13-mediated resistance response to
powdery mildew in barley (Hein et al. 2005). In rice, VIGS of
Xa38 compromised the resistance towards bacterial blight disease
(Kant et al. 2021). However, limited efforts have been made to
determine the function of genes related to disease resistance in
legumes by using reverse genetic approaches. Only a few studies
used RNAi to elucidate the function of IFS (Isoflavone synthase) and
CHR (Chalcone reductase) genes in soybean and identified their
role in 5-deoxyisoflavonoids that suppress race-specific resistance
and hypersensitive cell death in Phytophthora sojae infected
tissues (Graham et al. 2007). More recently, editing of Rpp1L and

Fig. 1 Reverse genetics for confirming function of genes in crop plants. Illustrative steps describing procedures that target random and
specific genomic regions, with or without genetic transformation and screening systems for functional characterization of genes.
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Table 1. Published TILLING populations in various cereal and legume crops used for functional analysis of genes.

Crop Mutagen Population size Frequency of random mutation Reference

Barley EMS 9216 1/1000 (Caldwell et al. 2004)

NaN3 3148 1/374 (Talamè et al. 2008)

EMS 10,279 1/500 (Gottwald et al. 2009)

NaN3 5600 1/374 (Sparla et al. 2014)

NaN3, NMU 9600 1/477 kb (Szurman-Zubrzycka et al. 2018)

EMS 3072 1/154 kb (Schreiber et al. 2019)

Maize EMS 750 1/485 (Till et al. 2004)

EMS 1086 – (Lu et al. 2018)

Rice DEB, EMS – 1/1000 (Wu et al. 2005)

Gamma rays 2130 1/6190 (Sato et al. 2006)

EMS 6912 1/451 kb (Rakshit et al. 2007)

EMS 768 1/294 (Till et al. 2007)

Az‐MNU 768 1/265 (Till et al. 2007)

MNU 767 1/135 (Suzuki et al. 2008)

EMS 2048 1/293 kb (Kim and Tai 2014)

EMS – 1/1000 kb (Ma et al. 2017)

FN, EMS, gamma rays EMS 33,653 – (Jia et al. 2019)

Sorghum EMS 1600 1/526 (Xin et al. 2008)

EMS 6400 – (Jiao et al. 2016)

Wheat EMS 8000 1/40 (Slade et al. 2005)

EMS 10,000 1/24 (Slade et al. 2005)

EMS 2348 1/23 (Dong et al. 2009)

EMS 1368 1/51 (Uauy et al. 2009)

HII 4500 1/84 (Fitzgerald et al. 2010)

EMS 1400 1/1300 (Rothe 2010)

EMS 4244 – (Sestili et al. 2010)

EMS 4500 1/40 kb (Botticella et al. 2011)

EMS 2610 1/34; 1/47 (Chen et al. 2012)

EMS 1532 1/92 (Rawat et al. 2012)

EMS 10,000 1/24 (Slade et al. 2012)

ENU 850 – (Agarwal et al. 2013)

EMS 2610 1/38-1/70 kb (Bovina et al. 2014)

EMS 4500 1/35,000 (King et al. 2015)

EMS 4180 1/5 kb (Dhaliwal et al. 2015)

EMS 1140 1/77 (Colasuonno et al. 2016)

EMS 2020 1/26 kb (Acevedo-Garcia et al. 2017)

EMS 1122 – (Li et al. 2017c)

EMS 2735 34.8/kb (Krasileva et al. 2017)

EMS 733 – (Mo et al. 2018)

EMS 3634 1/353.4-1/11.7 kb (Hussain et al. 2018)

EMS 10,000 – (Moehs et al. 2019)

EMS 1676 1/20 kb (Lethin et al. 2020)

EMS 1200 – (Olaolorun et al. 2021)

Alfalfa EMS 4500 & 4350 1/485 kb (Le Signor et al. 2009)

Chickpea Gamma rays 4000 <1/million bp (Amri-Tiliouine et al. 2018)

Common bean EMS 5000 2–3/MB (Porch et al. 2009)

Mungbean EMS 3,774 – (Varadaraju et al. 2021)

Pea EMS 8000 1/669 (Triques et al. 2007)

EMS 4704 1/ 200 kb (Dalmais et al. 2008)

Peanut EMS 3420 1/967 (Knoll et al. 2011)

Soybean NMU 768 11/550 (Cooper et al. 2008)

J. Kumar et al.

476

Heredity (2022) 128:473 – 496



Rps1 loci, which belonged to nucleotide-binding-site-leucine-rich-
repeat (NBS-LRR) family, led to new disease resistance specificities
against plant pathogens (Nagy et al. 2021).

ABIOTIC STRESS RESPONSIVE GENES FOR BREEDING
Knowledge of genes controlling abiotic stress tolerance is one of
the essential components for breeding climate-resilient crops.
Therefore, over the years, various reverse genetic approaches
including ectopic expression, TILLING, Eco-TILLING, gene editing,
and gene silencing using RNAi and VIGS have been used for this
purpose in cereal and legume crops (Table 4). Most of these
studies used ectopic expression analysis to explain the function of
genes like MtPHD6 in alfalfa, PvERF35i in common bean, CaGolS in
chickpea, CcCDR and CcCYP in pigeon pea (Quan et al. 2019; Kavas
et al. 2020; Salvi et al. 2020; Tamirisa et al. 2014; Juturu et al. 2021).
Among cereals, VIGS established the function of genes for drought
tolerance (TaEra1, TaSal1, TaBTF3, TaPGR5, TdAtg8, and TaH2B-7D;

Manmathan et al. 2013; Kang et al. 2013; Wang et al. 2014b;
Kuzuoglu-Ozturk et al. 2012; Wang et al. 2019), cold tolerance
(Hsp90, BBI, REP14, PAP6; Zhang et al. 2016, 2017) and drought and
salinity response (Rong et al. 2014). As WRKYs is one of the largest
transcription factor families in plants that play a crucial role in
plant development under drought stress conditions (Zhang et al.
2017), functional expression analysis of a gene ZmWRKY106
belonging to this transcription factor family showed enhanced
tolerance to drought and heat stresses in maize. In a study
involving overexpression of ZmWRKY106 revealed greater toler-
ance to drought and heat stresses in transgenic Arabidopsis plants
(Wang et al. 2018b), suggesting active participation of this gene in
multiple abiotic stress responses. In another study, function of
ARGOS8 gene identified first through overexpression analysis in
transgenic plant for drought tolerance and later confirmed by
CRISPR-Cas9 system of genome editing (Shi et al. 2017). In this
study, gene editing replaced the native promoter of ARGOS8 or
inserted into the 5′-untranslated region of this gene with native

Table 1. continued

Crop Mutagen Population size Frequency of random mutation Reference

EMS 768 1/140 (Cooper et al. 2008)

EMS 1536 1/74 kb (Tsuda et al. 2015)

EMS 6400 – (Espina et al. 2018)

EMS 21,600 ∼1/11.8 kb, (Li et al. 2017)

EMS 4032 – (Lakhssassi et al. 2021)

EMS ethyl methane sulfonate, NaN3 Sodium azide, Az‐MNU sodium azide plus methyl-nitrosourea, DEB diepoxybutane, HII heavy ion irradiation, NMU N-Nitroso-
N-methylurea, FN fast neutron.

Table 2. Insertional mutagenesis populations used for functional analysis of gene in rice and maize.

Crop Insertion type Gene Functional role Reference

Rice Retrotransposon (Tos17)
insertional mutants

phytochrome A Plant growth and development (Takano et al. 2001)

T-DNA insertion OsCHLH Mg-chelatase involving in the chlorophyll
branch of the tetrapyrrole biosynthetic
pathway leading to abnormal variation of
chlorophyll

(Jung et al. 2003)

Dwarf transposon (Ds) insertion
mutants

OsKS1 Gibberellin (GA) biosynthesis irrelevant to the
germination and growth of root

(Margis-Pinheiro et al. 2005)

21,049 T-DNA insertion lines MADS-box genes Plant development (Lee et al. 2021)

Ds element mutants Osnop (Oryza sativa
no pollen)

Sterile male mutant plant with pollen-less
flowers

(Jiang et al. 2005)

T-DNA insertional & Tos17
insertional mutation lines

flo4-2, flo4-3 Floury white-core endosperm (Kang et al. 2005)

Ds insertion mutants OSMYOXIB Pollen development by sensing changed
environmental factors

(Jiang et al. 2007)

Ds insertion semi-dwarf mutant OsCYP96B4 Defects in cell elongation and pollen
germination

(Ramamoorthy et al. 2011)

T-DNA insertion mutant RID1 Master switch for floral induction and regulates
the expression of a subset of regulatory genes
for controlling flowering

(Wu et al. 2008)

T-DNA insertion mutant JMJ706 Floral organ development (Sun and Zhou 2008)

T-DNA insertion mutant ila1 Abnormal vascular bundle formation and cell
wall composition in the leaf lamina joint

(Ning et al. 2011)

Ds insertion mutants OsPS1-F Regulator of plant growth and development
through electron transport

(Ramamoorthy et al. 2018)

retrotransposon Tos17 insertion OsHd1 Flowering time (Hori et al. 2016)

T-DNA insertion mutant OsHKT1;4 Salt tolerance (Oda et al. 2018)

Maize Transposition of Ac inerstion P Synthesis of pigments derived from flavan-4-ol
in the pericarp, cob glumes and other floral
organs.

(Athma et al. 1992)
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maize GOS2 promoter (responsible for a moderate level of
constitutive expression) leading to generation of several variants
having elevated levels of ARGOS8 transcripts. Evaluation of these
variants under drought conditions at flowering stage in the field
showed increased grain yield compared to the control and had no
yield loss under well-watered conditions (Shi et al. 2017). In rice,
OsCTZFP8 gene encodes a C2H2 zinc finger protein (a typical zinc-
finger motif), which is a potential nuclear localization signal (NLS)
and a leucine-rich region (L-box). Agrobacterium-mediated over-
expression of OsCTZFP8 gene in transgenic rice led to significantly
higher pollen fertility and seed setting resulting in higher yield
under cold conditions and thus demonstrating its role in cold
tolerance (Jin et al. 2018). More recently, ectopic expression
analysis showed the role of AtGRXS17 gene to control drought
tolerance in maize (Tamang et al. 2021). Eco-TILLING helped to
identify the association of BORON EXCESS TOLERANT1 gene with
boron tolerance and OsCP17, OsCPK17, OsRMC, OsNHX1, and
OsHKTI;5 genes with salt tolerance in barley and rice, respectively
(Ochiai et al. 2011; Negrão et al. 2013). Using the same approach,
Yu et al. (2012) reported genes encoding transcription factors in
association with drought tolerance in rice. Loss–of–function
mutants generated through CRISPR-Cas9 gene editing were used
to elucidate the function of SAPK2 (osmotic stress/ABA–activated
protein kinase 2) gene in rice. The mutants with edited SAPK2 gene
showed sensitivity towards drought stress and reactive oxygen
species (ROS) indicating its response to drought conditions. This
gene increased drought tolerance by (i) reducing water loss, and
(ii) inducing the gene expression for antioxidant enzymes. This
gene also showed tolerance to salt and PEG stresses. Thus, it has
been suggested as a candidate gene for breeding climate-resilient
cultivars of rice (Lou et al. 2017). In legumes, editing of
4-coumarate ligase (4CL) and Reveille 7 (RVE7) genes through
CRISPR-Cas9 showed their involvement in controlling drought
tolerance in chickpea (Badhan et al. 2021).

FUNCTIONAL ANALYSIS OF GENES INVOLVED IN
BIOSYNTHETIC PATHWAYS OF NUTRITIONAL TRAITS
Reverse genetic approaches have also been used to explain the
function of genes encoding metabolites and biochemical com-
pounds of biosynthetic pathways. These biochemicals and
metabolites are active during the growth and development of
crop plants and are responsible to improve the nutritional value
and other traits of agronomic importance in both cereals and
legumes. These traits are also known as biochemical and
metabolic traits. Reverse genetics based functional characteriza-
tion of several genes showed their association with metabolites or
biochemical compounds that are required to improve the
nutritional value of cereals and legumes (Table 5). For example,
application of VIGS to silence P23k gene, Oikawa et al. (2007)
demonstrated its role in biosynthesis of cell wall polysaccharides
and the formation of secondary walls in barley leaves. In wheat,
the function of the TaRSR1 gene has been associated with starch
synthesis using VIGS (Liu et al. 2016). In maize, candidate gene
association mapping was used to unravel the function of the
Arogenate dehydratase gene. This gene is involved in biosynthesis
of a metabolite phenylalanine, which is an essential aromatic
amino acid associated with nutritional value of maize (Wen et al.
2018). The function of two other genes Opaque2 and acetolactate
synthase 1 has also been determined using this approach (Deng
et al. 2017; Liu et al. 2017). Opaque2 encoded a bZIP transcription
factor that regulates expression of endosperm storage protein
genes during maize kernel development (Deng et al. 2017).
Acetolactate synthase 1 is involved in biosynthesis of branched-
chain amino acids and catalyzes the first step of valine and leucine
biosynthesis (Deng et al. 2017). In wheat, the Tryptophan
descarboxylase gene has been associated with tryptamine and
with tryptamine synthesis from tryptophan using candidate geneTa
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association mapping (Peng et al. 2018). In barley, RNAseq and
comparative analysis of wild type and nec3mutants resulted in the
identification of a candidate gene Nec3, which is responsible for
biosynthesis of Tryptamine 5-Hydroxylase. This enzyme functions
as a terminal serotonin biosynthetic enzyme in the tryptophan
pathway of plants (Ameen et al. 2021).
In rice, development of fragrance is an important nutritional

trait. Therefore, efforts have been made to identify genes
controlling fragrance development in rice grains using reverse
genetic approaches. It has been shown that 2-Acety-1-pyrroline
(2AP) is an important metabolite for developing fragrance in non-
scented rice and an inhibition of the betaine aldehyde dehydro-
genase 2 (OsBADH2) gene through RNAi led to synthesis of aroma
in rice grains. Silencing of this gene increased production of 2AP
metabolite by ~30–40% in seeds of transgenic IR-64 line, which
indicates functionality of this gene for regulating aroma develop-
ment (Khandagale et al. 2020). Earlier, functional characterization

of this gene had been established through genome editing
approach (Shan et al. 2015).
Removing toxic compounds from grains is another aspect of

improving the nutritional value of legumes and cereals. Among
cereal crops, cases of gene function have been associated with
metabolites/biochemical compounds that are involved in metal
production or uptake in rice. Suppression of the expression of
OsPCS1 (phytochelatin synthase) gene through RNAi restricted the
accumulation of the toxic heavy metal cadmium (Li et al. 2007). In
soybean, the role of myo-inositol-1-phosphate has been identified
in seed development metabolism through RNAi-based silencing of
GmMIPS1 gene (Nunes et al. 2006). Presence of high level of oleic
acid in soybean seeds enhances its nutritional importance and
thus, characterization of genes controlling the oleic acid level is
important for breeding oleic acid-rich soybean cultivars. In a
recent study, allelic variants for fatty acid desaturase (GmFAD2)
gene have been identified using the TILLING approach. These

Table 4. List of genes for abiotic stress tolerance identified using different reverse genetic approaches in cereal and legume crop species.

Crop Target gene Reverse genetic
approach/vector
system used

Trait Reference

Barley MYB1, TPP, ADF 3 Eco-TILLING/- Abiotic stress-related genes (Raghavan et al. 2007)

BORON EXCESS TOLERANT1 Eco-TILLING/- Boron toxicity (Ochiai et al. 2011)

HvHVA1, HvDhn6 VIGS/ BSMV Drought tolerance (Liang et al. 2012)

osCPK17, osRMC, osNHX1,
osHKTI;5, SalT

Eco-TILLING/- Salt tolerance (Negrão et al. 2013)

HvEXPB7 VIGS/ BSMV Drought tolerance (He et al. 2015)

HvPRT6 RNAi & TILLING Water logging resistance (Mendiondo et al. 2016)

HvATG6 VIGS/- Drought tolerance (Zeng et al. 2017)

Maize ARGOS8 CRISPR-Cas9/- Drought tolerance (Shi et al. 2017)

ZmWRKY106 Ectopic over expression Drought and heat tolerance (Wang et al. 2018b)

AtGRXS17 Ectopic expression/- Drought tolerance (Tamang et al. 2021)

Finger millet EcCaM Ectopic expression/- Drought and salinity tolerance (Jamra et al. 2021)

Rice OsSPL9 Ectopic expression/- Accumulation of cu (Tang et al. 2016)

OsAKT1, OsHKT6, OsNSCC2,
OsHAK1, OsSOS1

TILLING/- Membrane transport genes for salt
tolerance

(Hwang et al. 2016)

OsSAPK2 CRISPR-Cas9/- Drought tolerance (Lou et al. 2017)

OsSta2 Ectopic expression/- Salt stress tolerance (Kumar et al. 2017)

OsNCED3 CRISPR-Cas9/- Seed dormancy, plant growth, abiotic
stress tolerance, and leaf senescence

(Huang et al. 2018a)

OsbZIP50 Ectopic expression/- Zinc deficiency response (Lilay et al. 2020)

Wheat TdAtg8 VIGS/BSMV Drought tolerance (Kuzuoglu-Ozturk et al. 2012)

TaEra1,TaSal1 VIGS/ BSMV Drought tolerance (Manmathan et al. 2013)

TaBTF3 VIGS/ BSMV Drought tolerance (Kang et al. 2013)

TaPGR5 VIGS/ BSMV Drought tolerance (Wang et al. 2014b)

TaERF3 VIGS/ BSMV Salinity and drought tolerance (Rong et al. 2014)

PAP6 VIGS/ BSMV Cold tolerance (Zhang et al. 2016)

Hsp 90, BBI, REP14 VIGS/ BSMV Cold tolerance (Zhang et al. 2017)

TaH2B-7D VIGS/BSMV Drought tolerance (Wang et al. 2019b)

Alfalfa MtPHD6 Ectopic expression/- Osmotic and drought tolerance (Quan et al. 2019)

Chickpea CaGolS Ectopic expression/- Tolerance to dehydration stress (Salvi et al. 2020)

4CL), RVE7 CRISPR-Cas9/- Drought tolerance (Bandhan et al. 2021)

Common bean PvERF35i Ectopic expression/- Salt stress tolerance (Kavas et al. 2020)

Pigeonpea CcCDR Ectopic expression/- Cold and drought tolerance (Tamirisa et al. 2014)

CcCYP Ectopic expression/- Abiotic stress tolerance (Juturu et al. 2021)

BSMV barley stripe mosaic virus, VIGS virus-induced gene silencing.
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variants were responsible to increase oleic acid content in
soybean seed (Lakhssassi et al. 2021). Thus, available knowledge
of genes controlling nutritional traits is beneficial for precise
breeding of bio-fortified cereal and legume crops.

FUNCTIONAL ANALYSIS OF GENES CONTROLLING AGRO-
MORPHOLOGICAL TRAITS
Many agro-morphological traits enhance adaptive plasticity that
helps crop plants to survive and/or grow under changing
environmental conditions. Breeding of these traits can increase
the resilience of crops under changing conditions leading to
sustainable productivity. Knowledge of gene function controlling
these traits can help to breed climate-resilience varieties (Kumar
et al. 2019a). Over the years, efforts have been made to identify the
function of genes associated with agro-morphological traits or
adaptive traits such as flowering time, male sterility, wax formation,
seed size, anther development, heterosis, internode length, plant
growth, tiller number, grain number by using different reverse
genetic approaches (Table 6). Male sterility is required to breed
hybrid varieties that can provide phenotypic plasticity under
changing environments (Liu et al. 2021). In rice, the gene OsGEN-
L, belongs to the RAD2/XPG nuclease family, which has been
studied through RNAi and found to play a role in producing male
sterility (Moritoh et al. 2005). Functional analysis of the MS45 gene
proved that it controls male sterility in maize (Cigan et al. 2005).
Breeding for flowering time helps new crop varieties adapt to

different environments (Kumar et al. 2019a; Liu et al. 2021).
Therefore, functionality of genes related to flowering time or floral
development has been studied in cereal and legume crops for
several genes including OsMADS in rice (Jeon et al. 2000), PvE1L,
MtE1L, and GmMS in soybean (Zhang et al. 2016b; Sha et al. 2015),
SUPERMAN (SUP) in alfalfa (Rodas et al. 2021), and zm401, si,
ZmHox1a/ZmHox1b and ZmSOC1 in maize (Uberlacker et al. 1996;
Ma et al. 2005; Luo et al. 2020; Han et al. 2021). A rice gene OsPHL3
encodes a G2-like family transcription factor that delayed flower-
ing time when overexpressed and resulted in early flowering
when its function was lost due to gene editing by CRISPR-Cas9
(Zeng et al. 2018). In another study, editing of open reading
frames of Hd2 gene (Hd2 uORFs) resulted in delayed flowering in
rice. Editing of this gene also reduced the expression of Ehd1,
Hd3a, and RFT1 genes significantly but no change had been
identified at the transcription level of Hd2 gene. Thus, editing of
uORF region of flowering repressor could be an efficient approach
for breeding rice varieties to have delayed heading (Liu et al.
2021). In soybean, editing of E1 gene resulted in early flowering
under long day conditions due to its decreased expression, which
resulted in increased expression of another gene GmFT2a/5a
leading to early flowering. Thus, gene editing efforts laid the
foundation for breeding photo-insensitive varieties of soybean
suitable for high latitudes (Han et al. 2019). In addition to this,
editing and over expression analysis of another GmAP1 gene
resulted in early flowering and reduced plant height in soybean.
This gene was a part of regulatory networks as changes in this
gene altered the expression of several other genes related to
flowering and gibberellic acid metabolism. Thus, this gene has
been identified as invaluable for developing cultivars with
improved yield in soybean (Chen et al. 2020).
In hexaploid wheat, heritable mutations have been generated

by editing the TaGW2, TaLpx-1, and TaMLO genes. For instance,
the knockout mutations in all three homoeologous copies of the
TaGW2 gene resulted in a considerable increase in seed size and
1000-grain weight (Wang et al. 2018c). VIGS has been used to
silence the P23k gene in wheat, which led to abnormal leaf
development, asymmetric orientation of main veins, and cracked
leaf edges caused by mechanical weakness (Bennypaul et al.
2012). A gene NUMBER OF GRAINS 1 (NOG1) has been identified in
rice, which regulated grain number and yield. NOG1 encodes an

enoyl-CoA hydratase/isomerase (ECH), a key enzyme involved in
fatty acid β-oxidation pathway. Up-regulation of NOG1 signifi-
cantly enhanced grain number and yield without negative effects
on panicle number, grain weight, seed-setting rate, and heading
date. Thus, this gene enhanced molecular understanding of grain
yield regulation and identified a favorable gene for breeding high-
yielding rice varieties (Huo et al. 2017).
Using RNAi technology, Fu et al. (2011) reported the function of

coffee acid 3-O-methyltransferase (COMT) gene to be linked with
reduced lignin content, altered lignin composition, improved
forage quality, and increased ethanol production in switchgrass
(Panicum virgatum) without altering overall plant phenotype. RNAi-
directed knock down of Glabrous Rice 1 (GLR1) gene that encoded a
homeodomain protein containing the WOX motif, drastically
reduced the trichome number on the leaves and glumes in
transgenic rice plants (Li et al. 2012b). Recently, OsSPL6 was
reported to control panicle cell death by repressing the transcrip-
tional activation of the ER stress sensor IRE1 (Wang et al. 2018a).
Nitrogen-fixing symbiosis plays an important role in adaptation

of legumes because poor nodulation caused by different stresses
leads to poor yields in legume crops (Kumar et al. 2019a). In the
past, reverse genetic approaches including RNAi have been used
to determine the function of several genes responsible for
nitrogen fixation; nodule formation and nitrogen-fixing symbio-
somes. In M. truncatula, MtsuS1 gene for nitrogen fixation (Baier
et al. 2007), PIN genes for nodulation (Huo et al. 2006), and DMI2
gene for formation of N2 fixing symbiosomes have been
functionally characterized and validated using reverse genetic
approaches (Limpens et al. 2005). In another study, insertion of
retrotransposon Tnt1 in the MtMATE67 gene resulted in a loss of
functional activity leading to an accumulation of iron (Fe) in the
apoplasm of nodule cells, which provided a significant decline in
symbiotic nitrogen fixation and plant growth. Thus, this gene
played a primary role in citrate efflux from nodule cells in response
to a Fe signal and helped in symbiotic nitrogen fixation
(Kryvoruchko et al. 2018). Functional characterization of the
dehydrin MtCAS31 (cold-acclimation-specific 31) gene has also
been determined using the same approach and identified its role
in symbiotic nitrogen fixation under drought conditions in M.
truncatula. This gene expressed in nodules and interacted with
leghemoglobin MtLb120-1 by protecting it from the damage due
to drought stress. Disruption of the targeted gene due to insertion
of retrotransposon Tnt1 in a mutant line reduced nitrogenase
activity and ATP/ADP ratio, increased the activity of nodule
senescence genes and more accumulation of amyloplasts under
moisture-limited conditions. As a result, a new function for
dehydrins in SNF under drought stress conditions was established
(Li et al. 2018b). Knockdown of ethylene biosynthesis gene ACS10
conferred nodulation ability under limited nitrate conditions in M.
truncatula (van Zeijl et al. 2018). Rhizobia, nitrogen-fixing bacteria,
requires an oxygen-depleted atmosphere and consequently lives
inside a host plant, which dramatically alters its root development
to accommodate the bacteria.
Virus induced gene silencing has been used to dissect the

molecular pathways that led to nodule formation and the
mechanisms of substrate exchange between host and rhizobia.
In soybean, use of virus- or artificial microRNA-mediated gene
silencing of GmWPR1, GmExo70J7, GmExo70J8, and GmExo70J9
genes resulted in accelerated leaf senescence and reduced nodule
formation. Moreover, it has been found that legume-specific
WRKY-like and Exo70-like proteins are essential for the develop-
ment of sufficient numbers of root nodules in soybean (Wang
et al. 2016b). Function of a few genes associated with elevated
shoot lipid content in M. truncatula has recently been confirmed
using the VIGS approach. As a result, the role of SDP1 (SUGAR-
DEPENDANT 1), APS1 (ADP-GLUCOSE-PYROPHOSPHORYLASE SMALL
SUBUNIT 1), and PXA1 (PEROXISOMAL ABC TRANSPORTER 1) gene
has been identified in controlling the shoot lipid content
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Table 6. Functional analysis of genes controlling agro-morphological traits using reverse genetic approaches in cereal and legumes.

Crop Gene targeted Traits associated with target gene Gene editing system Reference

Maize ZmHox1a/ZmHox1b Vegetative and floral development Ectopic expression (Uberlacker et al. 1996)

zm401 Aberrant anther development Ectopic expression (Ma et al. 2005)

ZmARF25 Leaf size heterosis Ectopic expression (Li et al. 2014)

ZmCCT9 Early flowering under long day conditions Transposon insertions (Huang et al. 2018c)

ZmADF3 Seed size through the increase in cell size Ectopic expression (Qiao et al. 2016)

ARGOS8 Root-lodging resistance Ectopic expression (Shi et al. 2019)

E1, GmFT2a/5a Flowering time CRISPR-Cas9 (Han et al. 2019)

si3 Flower development Ectopic expression (Luo et al. 2020)

ZmSOC1 Plant growth and flowering Ectopic expression (Han et al. 2021)

Rice OsMADS Early flowering and dwarfism Ectopic expression (Jeon et al. 2000)

phyA Plant growth and development Insertional mutagenesis (Takano et al. 2001)

OsKS1 Germination and root growth Ds-transposon insertion (Margis-Pinheiro et al.
2005)

OsGEN-L Male sterility RNAi (Moritoh et al. 2005)

OsPPDKB White‐core endosperm floury endosperm T-DNA insertion (Kang et al. 2005)

OSH6-Ds Formation of an abnormally developed
phenotype of bract leaf at the part of cut
flower stalk

Insertional mutagenesis and
ecotopic over expression

(Park et al. 2007)

OsCSLD1 Inhibited growth of root hair Insertional mutagenesis and
ecotopic over expression

(Kim et al. 2007)

OsMYOXIB Photoperiod sensitive pollen development Ds-transposon insertion (Jiang et al. 2007)

SLAC1 Ow leaf temperature phenotype and high
stomatal conductance with a high
photosynthesis rate

TILLING (Kusumi et al. 2012)

LAZY1 Tiller-spreading CRISPR-Cas9- NHEJ (Miao et al. 2013)

LOX3 Storage tolerance TALEN-Based (Ma et al. 2015)

Gn1a, GS3, DEP1 Enhanced grain number, larger grain size
and dense erect panicles

CRISPR-Cas9- NHEJ (Li et al. 2016)

GW2, GW5, TGW6 Grain width and thousand-grain weight CRISPR-Cas9 (Xu et al. 2016)

OsPIL15 Plant height and the grain length CRISPR-Cas9 (Ji et al. 2017)

BADH2, DEP1, Gn1a, GS3,
GW2, Hd1, EP3, LPA1

Yield, plant architecture, and fragrance and
photoperiod

CRISPR-Cas9 (Shen et al. 2017)

RUPO Pollen tube growth and integrity CRISPR-Cas9 (Liu et al. 2017)

DEP1 Dense and erect panicles and reduced
plant height,

CRISPR-Cas9 (Wang et al. 2017a)

Hd2, Hd4, Hd5, Heading time CRISPR-Cas9 (Li et al. 2017b)

NRT1.1B, SLR1 Nitrogen use efficiency CRISPR-Cas9 (Lu and Zhu 2017)

GS3, Gn1a Grain size and grain number CRISPR-Cas9 (Shen et al. 2017, 2018)

Gn1a, DEP Yield traits CRISPR-Cas9 (Huang et al. 2018b)

OsSK41 Grain size and weight CRISPR-Cas9 (Hu et al. 2018)

Os AAP 3 Grain yield RNAi and CRISPR-Cas9 (Lu et al. 2018)

OsABA2 Cell death, pre-harvest sprouting,
enhanced growth, and resistance to rice
bacterial and blast diseases

CRISPR-Cas9 (Liao et al. 2018)

OsPHL3 Delayed flowering time CRISPR-Cas9 (Zeng et al. 2018)

CCD7 Tillering, and height CRISPR-Cas9 (Butt et al. 2018)

OsSPL18 Grain weight and grain number CRISPR-Cas9-HR (Yuan et al. 2019)

OsAAP5 Tiller number and grain yield RNaAi (Wang et al. 2019a)

RGG2 Grain size and organ size via the ga
pathway

CRISPR-Cas9 (Miao et al. 2019)

Lgg Grain size DNA transposon (Chiou et al. 2019)

OsPIL15 Grain size CRISPR-Cas9 (Ji et al. 2019)

OsGS3, OsGW2, OsGn1a Grain size, width and weight, and number CRISPR-Cas9 (Zhou et al. 2019)

Heading time CRISPR-Cas9 (Cui et al. 2019)
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(Wijekoon et al. 2020). In soybean, use of virus- or artificial
microRNA-mediated gene silencing for GmWPR1, GmExo70J7,
GmExo70J8 and GmExo70J9 genes resulted in accelerated leaf
senescence and reduced nodule formation (Wang et al. 2016b).
In addition to this, functional characterization of genes has also

been associated with metabolites/biochemical compounds that are
involved in herbicide tolerance and other traits like somatic
embryogenesis, flavonol biosynthesis, root elongation and archi-
tecture, phosphorus availability, and morphology (Table 5). For
example, CRISPR-Cas9 based functional analysis of ALS gene
encoded the acetolactate synthase enzyme that governed herbi-
cide resistance in soybean (Li et al. 2015), rice (Endo et al. 2016; Sun
et al. 2016; Butt et al. 2017), and maize (Svitashev et al. 2015).

EXPLOITATION OF REVERSE GENETIC-BASED FUNCTIONALLY
CHARACTERIZED GENES IN BREEDING
Different reverse genetic approaches ultimately make available
genes and their genomic sequences associated with a known

function for economically important traits. Thus, agriculturally
useful genes are effectively mined for genetic enhancement and
breeders can prepare a blueprint of a variety using these genes
that are able to fulfill the diverse needs of crop production such as
high yield, nutrient rich, multiple stress resistances, and high
nutrient-use efficiency (Jiang et al. 2012). So far, a few genes have
been validated for their function associated with traits of
economic importance in cereal and legumes crops. Now, there
is a need to exploit these genes to breed nutrient-rich and
climate-resilient cultivars and maximize genetic gain in cereal and
legume crops following different breeding strategies (see Fig. 2).

DEVELOPMENT OF FUNCTIONAL MAKERS FOR ACCELERATING
GENETIC GAIN THROUGH MARKER-ASSISTED BREEDING
Availability of nucleotide sequences of functionally characterized
genes provide an opportunity to develop gene-specific markers or
functional makers. These markers can be used to mine the novel
alleles from landraces or wild species, which subsequently can be

Table 6. continued

Crop Gene targeted Traits associated with target gene Gene editing system Reference

Se13, PHYB, Se14, Hd3a, Ef7,
RFT1, Ehd1, Hd1, Ghd7,
Dth8

WUSCHEL (AtWUS) Plant growth and development Ectopic expression (Victorathisayam and
Sridevi 2020)

Hd2 uORFs Delay flowering CRISPR-Cas9 (Liu et al. 2021)

Sorghum cer5, cer6 Biosynthesis of wax TILLING (Jiao et al. 2016)

Wheat Rht-B1b, Rht-D1b Mutant gibberellin response modulators
leading to reduced plant height

Comparative genomics (Peng et al. 1999)

PsyA1 Yellow pigment (YP) content Candidate gene-based
association mapping

(He et al. 2008)

VRN-A1 Vernalization Eco-TILLING (Chen et al. 2011)

TaSdr Preharvest sprouting tolerance Comparative genomics (Zhang et al. 2014)

GW2 Increased grain weight and protein
content

CRISPR-Cas9- NHEJ (Zhang et al. 2018)

TaGW2 Grain size and weight CRISPR-Cas9, TILLING (Wang et al. 2018d)

TaCKX2-D1 Grain number per spikelet CRISPR-Cas9 (Zhang et al. 2019)

TaExpA6 Increasing grain size and weight Ecotopic expression (Calderini et al. 2021)

Alfalfa SUP Inflorescence and flower development Ectopic expression (Rodas et al. 2021)

Chickpea transcription factor genes Seed weight Eco-TILLING (Bajaj et al. 2016)

Mungbean GI, RMS, TFL1 Plant architecture TILLING (Varadaraju et al. 2021)

Pea PsPDS, UNI, PsKOR1 Photo-bleached leaves, distorted floers
and leaves, reduction in height and
inhibition root growth

VIG (Constantin et al. 2004)

gibberellin 3β-hydrolase
gene

Internodes length TILLING (Triques et al. 2007)

Soybean miR160 Auxin hypersensitivity, cytokinin
hyposensitivity, and inhibition of symbiotic
nodule development

Ectopic expression (Turner et al. 2013)

GmMS Delay flowering Ectopic expression (Sha et al. 2015)

GmWRP1, GmExo70J Symbiosis and growth and development Ectopic expression (Wang et al. 2016b)

PvE1L Delayed the onset of flowering Ectopic expression (Zhang et al. 2016b)

MtE1L Flowering and plant growth Ectopic expression (Zhang et al. 2016b)

GmFT2a Delays flowering time CRISPR-Cas9 (Cai et al. 2018a, 2019b)

LNK2 Flowering CRISPR-Cas9 (Li et al. 2020b)

GmAP1 Early flowering and reduced plant height Overexpression and CRISPR-
Cas9

(Chen et al. 2020)

GmFT2a, GmFT5a Flowering under different photoperiods CRISPR-Cas9 (Cai et al. 2020)
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introgressed to improve current germplasm (Xiao et al. 1998). It
can be helpful to widen the cultivated gene pool and accumulate
desirable alleles in one background in order to maximize genetic
gain (Francki and Appels 2002). Allelic variation for a target locus is
responsible to generate phenotypic variation. These variations
occur due to changes at single or multiple nucleotide site(s) of the
gene sequence or insertion/deletion (InDel) or copy number
variation (CNV) in the gene sequence. These variations can be
detected by following two types of functional markers.

PCR-based functional markers
PCR-based functional markers have been developed for many
genes controlling agronomically important traits in cereal and
legume crops (Kumar et al. 2011). In soybean, gene-specific
markers have been developed for glycinin genes (i.e., Gy1, Gy2,
Gy3, and Gy5) and used to identify allelic variation using Eco-
TILLING. When tested for their selection efficiency among
breeding lines having different subunits of glycinin seed storage
protein and these markers showed their utility for nutritional
quality improvement in soybean (Jegadeesan et al. 2012).
Similarly, a functionally cleaved amplified polymorphism sequence
(CAPS) marker developed for TaSdr-B1 gene controlling seed
dormancy was identified through comparative genomics in wheat.
This marker was subsequently used for functional characterization
of this candidate gene using association and linkage mapping. As
a result, a useful functional marker has been identified for
developing pre-harvest sprouting (PHS) tolerant cultivars through
marker-assisted selection in wheat (Zhang et al. 2014). In another
study, two major semi-dwarfing genes Rht-B1b (Rht1) and Rht-D1b
(Rht2) identified through comparative genomics in wheat have
been used to develop PCR-based functional markers. The further
validation of these markers showed perfect association with
dwarfing phenotypes (Ellis et al. 2002). Also, a PCR-based
functional STS marker has been developed for phytoene synthase
(PsyA1) gene controlling yellow pigment (YP) content of wheat
grain. Different fragment sizes of this co-dominant marker showed
close association with high and low YP content containing wheat
cultivars and advanced lines. Hence, this marker has been found

useful for wheat breeding programs targeting improvement in YP
content in wheat (He et al. 2008). In rice, a kompetitive allele-
specific PCR (KASP) marker developed for SSIIIa gene encoding
low-amylose content has been used to select favorable lines
through marker-assisted backcross breeding. Breeding lines with
amylose content ranging from 12.4 to 16.8% have been identified
and found useful for breeding high-quality rice for cooking and
eating (Kim et al. 2021). Function of NIGHT LIGHT-INDUCIBLE AND
CLOCK-REGULATED 2 (LNK2) gene for shortening flowering time
has been established through genome editing in soybean. For this
gene, functional markers have been developed to identify novel
components of flowering-time control. These markers may benefit
the development of soybean cultivars for high-latitude environ-
ments through marker-assisted selection (Li et al. 2020b).

Sequencing-based functional SNPs for haplotype-based
breeding
Next-generation sequencing also offers an opportunity to
generate the whole genome re-sequencing of many genotypes
for targeted candidate genes controlling traits of agronomic
importance. This paves the way to identify haplo-SNPs for
candidate genes having strong association with targeted traits
leading to identification of superior haplotypes for deployment in
haplotype-based breeding to develop next-generation tailor-
made crop varieties. In soybean, resequencing of GmMYB29 gene
among a subset of 30 soybean accessions led to the identification
of 12 SNPs and 11 indels (insertions and deletions) associated with
isoflavone contents. This association study identified 11 probable
causative sites responsible for variations in the total isoflavone
content (TIC) and two sites showed total contribution of 49.99% of
the phenotypic variation. Another site having a single nucleotide
base transversion led to a substitution of lysine to asparagine that
contributed to 14.91% of the variation in TIC (Chu et al. 2017). In
rice, an OsSNB gene has been identified for grain length, width,
and weight using reverse genetic approaches (overexpression and
CRISPR-Cas9 analysis). Resequencing of 168 rice accessions for this
gene led to identification of eight haplotypes of SNPs. One of
them named Hap 3 for wider grain width had a 225 bp insertion in

Fig. 2 Breeding strategies for the development of climate-resilient and nutrient-rich cultivars using functionally characterized genes.
Flow chart illustrating the steps for deploying targeted functional gene(s) through markerassisted breeding and cisgenic/transgenic breeding
methods. Strategies allow evaluation and selection of the desired breeding lines for the target traits.
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the promoter, which was used as a functional marker (OsSNB_In-
del2) for marker-assisted selection for improvement of grain width
(Ma et al. 2019). In another study, resequencing of 150 accessions,
which were evaluated for resistant starch (RS) and predicted
glycemic index (PGI), identified favorable SNPs for eight traits. In
this study, superior haplotypes for the target traits have been
identified among 11 selected candidate genes. The candidate
gene Os06g11100 (H4-3.28% for high RS) and Os08g12590 (H13-
62.52 as intermediate PGI) had superior haplotypes for RS and PGI.
Thus, this study provided an opportunity to identify donors having
superior haplotype combinations. These donors can be used for
tailoring high quality healthier rice varieties based on consumer
preference and market demand using haplotype-based breeding
(Selvaraj et al. 2021). Similarly, in pigeon pea, superior haplotypes
for 10 drought-responsive candidate genes have been identified
through whole genome re-sequencing of 292 genotypes. This led
to the identification of the most promising haplotypes for three
genes regulating five component of drought tolerance (Sinha
et al. 2020).

CIS-/TRANSGENIC BREEDING USING REVERSE GENETIC-BASED
FUNCTIONALLY CHARACTERIZED GENES
Knowledge of reverse genetics may be used to generate improved
cis/transgenic plants for commercialization in two ways: (i) use of
functionally characterized gene(s) for over-expression/silencing in
transgenic plants, and (ii) editing of target gene(s) in cisgenic
plants (Banerjee et al. 2017).

Overexpression/silence the introduced gene in transgenic
plants
A function of phosphoenolpyruvate carboxylase gene (PEPC) has
been studied through an expression analysis approach of reverse
genetics (Izui et al. 1986). A full-length cDNA of PEPC gene was
isolated from maize (C4 plants) and introduced into wheat (C3
plant) for improving photosynthetic efficiency. The resulting
transgenic plants showed much higher (140%) phosphoenolpyr-
uvate carboxylase activity as compared to non-transformed plants
leading to an increase in weight of seed per spike and thousand-
grain weight (Hu et al. 2012). These transgenes can be utilized
directly or can be incorporated into the breeding program for
genetic improvement. In rice, expression analysis of Xa10-Ni and
Xa23-Ni genes under the Xa10 promoter showed disease
resistance to X. oryzae pv. oryzae strains in transgenic rice plants.
These genes encoded functional executor R proteins, which
induced cell death and were found useful for genetic engineering
for broad-spectrum disease resistance to plant pathogenic
Xanthomonas spp (Wang et al. 2017c).

Cisgenic populations carrying edited gene
Genome editing has emerged as a powerful approach, which
rapidly turned out to infer molecular function of genes. Therefore,
it has been identified as a most promising “New Plant Breeding
Technology” (NPBT) that made possible fast transition of the
improved cultivars from the lab to the market (Menz et al. 2020).
Since genome editing makes changes in the genome or gene(s)
identical to those derived from conventional breeding, or natural/
induced mutations (Grohmann et al. 2019), improved cisgenic
plants developed through genome editing are being considered
as non-GMO crops in several countries. Thus, genome editing
products that are cisgenic are not regulated like GMO crops (Menz
et al. 2020). This reverse genetic approach has become useful for
developing climate resilient and nutritionally rich crop plants in a
short period of time. Several genes controlling grain yield, grain
quality, biotic and abiotic stress tolerance traits have successfully
been utilized to improve lines in cereal and legume crops (Mishra
et al. 2018). For example, CRISPR-Cas9 was used to edit the
fragrance gene Badh2 in the Indica rice line Zhonghua 11. This

resulted in a mutated line that possessed an increased amount of
2AP due to an additional T base in the first exon of Badh2 leading
to enhanced fragrance in rice (Shao et al. 2017). Editing of soluble
pyrabactin resistance PYR1-like (PYL) genes using CRISPR-Cas9
technology led to increased growth and productivity in rice (Miao
et al. 2018). Similarly, the editing of two rice branching enzyme
(SBE) genes namely SBEI and SBEIIb led to the development of rice
with high amylose (Sun et al. 2017). In this study, mutants with
SBEII gene expressed an increase of as much as 25 and 9.8 %, in
amylose content (AC) and resistant starch (RS) content, respec-
tively and hence editing of SBEIIb could be crucial in the
development of rice varieties with high amylose and RS contents.
A metal transporter gene OsNramp5 has been edited using
CRISPR-Cas9 system. This resulted in the development of Indica
rice lines having low Cd accumulation (Tang et al. 2017). Under
field trials, Indica rice lines with edited OsNramp5 gene had Cd
concentration consistently <0.05 mg/kg in their grains compared
to grains of wild-type Indica rice (0.33 to 2.90 mg/kg) without
affecting the grain yield. Also, this reverse genetic system helped
to knockout ERF transcription factor gene OsERF922 leading to
enhanced resistance to rice blast (Wang et al. 2016a). Similarly,
editing of eIF4G gene resulted in the development of a new source
of resistance to rice tungro disease (RTD) in the background of the
IR64 variety having susceptibility to rice tungro spherical virus
(RTSV) that can be used as valuable materials for developing more
diverse RTSV-resistant varieties (Macovei et al. 2018). In barley,
HvCKX1 gene controls the endogenous cytokinin status. By
targeting this gene, homozygous transgenic plants with silenced
HvCKX1 gene and azygous knock-out Hvckx1 cisgenic mutants
developed through the gene editing approach have been studied
for their expression and other phenotypic attributes. In this study,
although trans/-cisgenic lines showed reduced root growth, they
produced more tillers and grains than azygous wild-type controls.
Trans/-cisgenic plants had increased yield up to 15%. However, on
the other hand, total grain biomass was decreased to 80%
compared to wild type. This study confirmed the key role of
HvCKX1 gene for regulating cytokinin content in barley (Holubová
et al. 2018). In maize, novel variants of ARGOS8 gene for ethylene
sensitivity generated through genome editing improved grain
yield under drought stress conditions. In this study, the native
promoter of this gene was inserted into the 5′-untranslated region
of the native ARGOS8 gene or replaced with maize GOS2
promoter. This resulted in higher grain yield under limited water
conditions in the field and had no yield loss under well-watered
conditions. This study provided evidence for identification of
novel allelic variation for breeding drought-tolerance in crop
plants (Shi et al. 2017). In soybean, genome editing based on
CRISPR-Cas9 generated mutants of E1 gene, producing early
flowering under long day condition. This could be due to
generation of the truncated E1 protein, which increased expres-
sion of GmFT2a/5a gene by disinhibiting it. This laid a foundation
for breeding soybean cultivars suitable for cultivation at high
latitudes (Han et al. 2019). In another study, maize SHRUNKEN2
(SH2) and WAXY (WX) genes were edited through CRISPR-Cas9
with a dual gRNA construct and identified single or double
mutations for producing super-sweet (sh2), waxy (wx) corn or SWC
(Dong et al. 2019). In this study, transgene-free (cisgene) lines
having homozygosity for both sh2 and wx alleles (sh2sh2wxwx)
were identified and named sw lines. These lines have been used
for specialty corn breeding. The crosses between sw lines and wx
lines resulted in the development of super-sweet‐waxy compound
F1 plants. Estimation of soluble sugar contents in kernels of fresh
ears, stalks and leaves in these specialty super-sweet sw lines
showed higher sugar contents with an average of 7.38–10.28% in
fresh kernels. Some of them had even higher amylopectin content
without affecting other agronomic traits (Dong et al. 2019). In rice,
two elite sticky varieties have been developed through editing the
waxy gene (Wx). This gene encodes the granule bound starch
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synthase (GBSS) enzyme and plays an important role in amylose
synthesis. These glutinous (sticky) rice varieties have been
developed with little amylose content (2.6–3.2%) (Yunyan et al.
2019). Thus, cisgenic plants generated through gene editing can
be used directly as commercial cultivar or can be utilized further in
a breeding program by introgressing such desirable alleles
through marker-assisted breeding.

PROSPECTS OF FUNCTIONALLY CHARACTERIZED GENE(S)
During the last few years, functions of many genes have been
identified using different reverse genetic approaches in cereals
and legumes (see Tables 2–6 for reference). This has revolutio-
nized the field of functional genomics. The upgrading of new
reverse genetic tools has facilitated the search for functions of
many genes of agronomic importance in crop plants. However,
only a limited number of genes have been exploited in genetic
improvement for several reasons. Firstly, limited efforts have been
made to develop breeder-friendly functional markers that facil-
itate the selection of desirable plant types in breeding popula-
tions. In the recent years, NGS has provided an opportunity of SNP
marker-based selection of desirable plants through re-sequencing
of large populations. However, the high cost of resequencing
limits its use by plant breeders for selecting superior lines in early
segregating generations as plant breeders need to screen large
number lines ever year in their breeding program. Secondly,
advancements in RNAi have made the availability of miRNA,
siRNA, tasiRNA, natsiRNA, and hpRNA based approaches. These are
being used to develop the virus-free cultivars and to manipulate
metabolic pathways for improving agronomic traits. However,
their use is limited by the unavailability of genetic transformation
systems in some crop plant species and due to environmental and
regulatory issues associated with GMO crops. Thirdly, TILLING has
convincingly proved its potential in crop improvement in those
species where genetic transformation is not possible but TILLING
platforms and other databases are not available for every crop.
Finally, CRISPR-Cas9 based genome editing technology is emer-
ging as a potential tool to make desirable genetic corrections in
the targeted gene(s) leading to generation of desirable alleles for
improved types in crop plants. This trans-generational gene
editing activity can serve as the source of novel variation in the
progeny. Plant breeders can cross the plants expressing the gene
edited constructs with their lines of interest (Wang et al. 2018c).
This approach has been used successfully to develop nutritionally
rich super sweet and waxy cultivars in maize and elite sticky
varieties in rice by editing SH2/ WX and waxy genes, respectively
(Dong et al. 2019; Yunyan et al. 2019). Among legumes, gene
editing of E1 gene controlling soybean flowering provided novel
mutants having early flowering under long day condition. This
enabled development of cultivars suitable for high latitudes by
using these novel mutants in crossing schemes (Han et al. 2019).
In 2018, a soybean strain with modified oil composition was

harvested on a small scale, which had been constructed using

TALEN-based genome editing. The cultivation area increased to
approximately 17,000 hectares in 2019. The company Calyxt,
which developed the soybean, is marketing it as an identity
preserved product by contracting with farmers and purchasers.
Calyxt developed the new soybean cultivars, distributed the seeds
to contract farmers and commercialized the derived product (High
Oleic Soybean Oil) as a high-quality food ingredient in 2019. High-
oleic soybean oil contained about 80% oleic acid and up to 20%
less saturated fat and had three times higher fry-life and extended
shelf-life compared to commodity oils (Calyxt Inc 2020). Using this
gene editing approach, Calyxt is expected to launch high-oleic
and low-linolenic (HOLL) soybeans by 2023 (Calyxt Inc 2020). It is
also targeting commercialization of gene edited products of high-
fiber in wheat, cold-tolerance in oat, and pulses with improved
protein profiles and flavor in coming years (Calyxt Inc 2020).
Another USA based company namely, Yield10 Bioscience Inc. has
received non-regulated status for CRISPR-Cas9 based genome
edited products and is planning to commercialize the gene edited
products for soybean, corn, sorghum, rice and wheat crops in
coming years (Yield10 Bioscience Inc. 2020). Further genome
edited plant products are in the pipelines of small and medium-
sized biotech companies as well as other international plant
breeders. So, more products will follow soon presumably without
severe regulatory hurdles in the United States Food and Drug
Administration (USFDA) since soybean and canola have success-
fully undergone this procedure without any major issues (USFDA
2020). Other companies are using CRISPR-Cas9, CRISPR-Cpf1,
CRISPR-Cms1 and other gene editing techniques for genetic
improvement in crop plants (see Table 7). Further, in future a
haploid induction (HI) editing technology, HI-Edit may emerge as a
direct editing tool of targeted genes in cereals, especially in wheat
and maize (Kelliher et al. 2019). More efforts will be required to
develop the genotype independent strategy for genome editing
as developed in other crops using RNA viral vector-mediated
genome-editing methodology (Ellison et al. 2020). However, a
strong collaboration between plant breeders and molecular
biologists is required in the public sector for routine exploitation
of such advanced technologies in breeding programs to develop
nutrient-rich and climate-resilient crops. Although different
reverse genetic tools have their own potentials and drawbacks,
their integrated use may become a boon for crop improvement. In
future, advances in high-throughput multi-omics technologies will
provide the opportunities for identification of the functionally
characterized genes and their interactions underlying phenotypic
variation (i.e., genetic mysteries). Thus, Interactome Big Data for
functional genes along with machine learning will help to
understand networks of functional genes underling economically
important traits (Wu et al. 2021). This functional knowledge of
genes along with germplasm, and genomic data will facilitate
genomic-based breeding for developing the climate resilient and
nutritionally rich cultivars for mitigating the current threats of
climate change. Targeted traits like yield, quality, resistances to
biotic and abiotic stresses, NUE, lists of the genes and germplasm

Table 7. Name of private sector companies that are commercializing genome editing products of crop plants Source: Taylor (2019).

Company Country Description of crop product

Benson Hill Biosystems St. Louis, MO Row crops (crops that grow in rows with dense-seeded) edited for higher yield, stress
resistance, and herbicide tolerance

Corteva (agricultural division of
DowDuPont)

Wilmington, DE Waxy corn modified for altered starch composition

Pairwise Durham, NC Row crops such as corn and soybeans with increased productivity, disease resistance;
more-convenient fruits and vegetables

Syngenta Basel, Switzerland Corn, soy, wheat, tomato, sunflower, modified to increase yield

Tropic Biosciences Norwich, UK Disease-resistant bananas, decaffeinated coffee

Yield10 Bioscience Woburn, MA Camelina engineered for higher oil content
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for these targeted traits, genomic or specific gene selection
technologies and breeding programs for implementation will be
part of this genomic-based designed breeding (Li et al. 2018d).
Overall, the focus should be on using the reverse genetics along
with forward genetics approaches for making desirable genetic
improvement in crop plants.
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