Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of Ang-(1–7) and des-Arg9BK as new biomarkers of obesity and cardiometabolic risk factors in adolescents

Abstract

Children with obesity have a high risk of developing cardiovascular disease and hypertension, which is associated with the renin–angiotensin system (RAS) activation and kallikrein–kinin system (KKS) inactivation. Although recent studies have identified several peptide-based biomarkers for obesity, circulating peptides from the RAS and KKS in adolescents with obesity have not been described. The aim of this study was to examine circulating levels of RAS and KKS peptides in adolescents with obesity to investigate the turnover of these peptides and their relationship to metabolic disorders resulting from weight gain. The subjects (n = 104) were divided into normal weight (NW), overweight (OW), obese (OB), and morbidly obese (MO) groups. Anthropometric profiles were created by measuring height, weight, blood pressure, and skinfolds. Plasma levels of Ang I, II, (1–7), BK, and des-Arg9BK were quantified by high-performance liquid chromatography. The levels were as follows: Ang-(1–7)—MO 58.3 ± 50, OB 223.2 ± 150, OW 318.6 ± 190, NW 479.1 ± 160 pmol/mL, and Bradykinin (BK)—MO 367.6 ± 103, OB 253.8 ± 130, OW 484 ± 279, NW 874.9 ± 385 pmol/mL. Ang-(1–7) correlated inversely with weight, body mass index, leptin, diastolic blood pressure, and systolic blood pressure. BK and Ang-(1–7) levels correlated inversely with skinfolds, waist-hip ratio (WHR), leptin, and arm circumference. BK levels correlated with adiponectin and Ang-(1–7) levels. Plasma Ang I levels were higher in the MO and OB groups than in the NW group, but plasma Ang II levels were similar in all groups. We suggest that Ang-(1–7) and des-Arg9BK metabolites are novel biomarkers of childhood obesity that are important for determining treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Organization WH. Obesity and overweight. Fact sheet. World Health Organization. 2016. http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 15 Oct 2018.

  2. IBGE. IBGE: Instituto Brasileiro de Geografia e Estatística. https://ww2.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2008_2009_encaa/default.shtm. Accessed 15 Oct 2018.

  3. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 2004;351:2694–703.

    Article  CAS  Google Scholar 

  4. Tanaka M. Improving obesity and blood pressure. Hypertens Res. 2020;43:79–89. https://doi.org/10.1038/s41440-019-0348-x.

    Article  PubMed  Google Scholar 

  5. Orlando A, Cazzaniga E, Giussani M, Palestini P, Genovesi S. Hypertension in Children: Role of Obesity, Simple Carbohydrates, and Uric Acid. Front Public Health. 2018;6. https://doi.org/10.3389/fpubh.2018.00129.

  6. Regoli D, Gobeil F. Kallikrein–kinin system as the dominant mechanism to counteract hyperactive renin–angiotensin system. Can J Physiol Pharm. 2017;95:1117–24.

    Article  CAS  Google Scholar 

  7. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1-9. https://doi.org/10.1161/01.res.87.5.e1.

  8. Oliveira MA, Carvalho MH, Nigro D, Passaglia CR, Fortes ZB. Angiotensin-(1–7) and bradykinin interaction in diabetes mellitus: in vivo study. Peptides. 2002;23:1449–55.

    Article  CAS  Google Scholar 

  9. Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Ren Physiol. 2010;298:F1297–305.

    Article  CAS  Google Scholar 

  10. Doehner W, Kalantar-Zadeh K, Anker SD. The obesity paradigm and lifetime risk of cardiovascular disease. JAMA Cardiol. 2018;3:895–6.

    Article  Google Scholar 

  11. Shamansurova Z, Tan P, Ahmed B, Pepin E, Seda O, Lavoie JL. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight. Mol Metab. 2016;5:959–69.

    Article  CAS  Google Scholar 

  12. Rhaleb N-E, Yang X-P, Carretero OA. The kallikrein–kinin system as a regulator of cardiovascular and renal function. Compr Physiol. 2011;1:971–93.

    Article  Google Scholar 

  13. Guang C, Phillips RD, Jiang B, Milani F. Three key proteases–angiotensin-I-converting enzyme (ACE), ACE2 and renin–within and beyond the renin–angiotensin system. Arch Cardiovasc Dis. 2012;105:373–85.

    Article  Google Scholar 

  14. Mori MA, Araújo RC, Pesquero JB. Kinin B1 receptor stimulation modulates leptin homeostasis. Evidence for an insulin-dependent mechanism. Int Immunopharmacol. 2008;8:242–6.

    Article  CAS  Google Scholar 

  15. Simões e Silva AC, Diniz JSS, Pereira RM, Pinheiro SVB, Santos RAS. Circulating renin angiotensin system in childhood chronic renal failure: marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr Res. 2006;60:734–9.

    Article  Google Scholar 

  16. Passos-Silva DG, Verano-Braga T, Santos RAS. Angiotensin-(1–7): beyond the cardio-renal actions. Clin Sci. 2013;124:443–56.

    Article  CAS  Google Scholar 

  17. Santos SHS, Andrade JMO, Fernandes LR, Sinisterra RDM, Sousa FB, Feltenberger JD, et al. Oral Angiotensin-(1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet. Peptides. 2013;46:47–52.

    Article  CAS  Google Scholar 

  18. Roulet C, Bovet P, Brauchli T, Simeoni U, Xi B, Santschi V, et al. Secular trends in blood pressure in children: a systematic review. J Clin Hypertens. 2017;19:488–97.

    Article  Google Scholar 

  19. Fernandes FB, Plavnik FL, Teixeira AM, Christofalo DM, Ajzen SA, Higa EM, et al. Association of urinary n-domain angiotensin I-converting enzyme with plasma inflammatory markers and endothelial function. Mol Med. 2008;14:429–35.

    Article  CAS  Google Scholar 

  20. Organization WH. WHO AnthroPlus for personal computers manual: software for assessing growth of the world’s children and adolescents. WHO. 2009. http://www.who.int/childgrowth/software/en/. Accessed 15 Oct 2018.

  21. Falkner B, Daniels SR, Flynn JT, Gidding S, Green LA, Ingelfinger JR, et al. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.

    Article  Google Scholar 

  22. Arita DY, Cunha TS, Perez JD, Colucci JA, Ronchi FA, Nogueira MD, et al. Overexpression of urinary n-domain ACE in chronic kidney dysfunction in wistar rats. Clin Exp Hypertens. 2012;34:389–96.

    Article  CAS  Google Scholar 

  23. Colucci JA, Yuri Arita D, Sousa Cunha T, Seno Di Marco G, Vio CP, Pacheco-Silva A, et al. Renin–angiotensin system may trigger kidney damage in NOD mice. J Renin Angiotensin Aldosterone Syst. 2011;12:15–22.

    Article  CAS  Google Scholar 

  24. Soares RAG, Santos PCJL, Machado-Coelho GLL, Nascimento RMdo, Mill JG, Krieger JE, et al. CYP2C9 and VKORC1 polymorphisms are differently distributed in the brazilian population according to self-declared ethnicity or genetic ancestry. Genetic testing and molecular. Biomarkers. 2012;16:957–63.

    CAS  Google Scholar 

  25. Grundy SM, Becker D, Clark LT, Cooper RS, Denke MA, Howard J. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106:3143–421.

    Article  Google Scholar 

  26. Maluf-Meiken LCV, Fernandes FB, Aragão DS, Ronchi FA, Andrade MCC, Franco MC, et al. N-Domain isoform of Angiotensin I converting enzyme as a marker of hypertension: populational study. Int J Hypertens. 2012;2012:1–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362081/.

  27. Corica D, Aversa T, Valenzise M, Messina MF, Alibrandi A, De Luca F, et al. Does family history of obesity, cardiovascular, and metabolic diseases influence onset and severity of childhood obesity? Front Endocrinol. 2018;9:187.

    Article  Google Scholar 

  28. Tybor DJ, Lichtenstein AH, Dallal GE, Daniels SR, Must A. Independent effects of age-related changes in waist circumference and BMI z scores in predicting cardiovascular disease risk factors in a prospective cohort of adolescent females. Am J Clin Nutr. 2011;93:392–401.

    Article  CAS  Google Scholar 

  29. Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertension. 2002;40:441–7.

    Article  CAS  Google Scholar 

  30. I’Allemand D, Wiegand S, Reinehr T, Müller J, Wabitsch M, Widhalm K, et al. Cardiovascular risk in 26,008 European overweight children as established by a multicenter database. Obesity. 2008;16:1672–9.

    Article  Google Scholar 

  31. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    Article  Google Scholar 

  32. Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 2005;288:H2031–41.

    Article  CAS  Google Scholar 

  33. Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29:415–23. https://doi.org/10.1093/ajh/hpw003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel VB, Basu R, Oudit GY. ACE2/Ang 1–7 axis: a critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte. 2016;5:306–11.

    Article  CAS  Google Scholar 

  35. Santos SHS, Fernandes LR, Mario EG, Ferreira AVM, Pôrto LCJ, Alvarez-Leite JI, et al. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes. 2008;57:340–7.

    Article  CAS  Google Scholar 

  36. Becker M, Siems W-E, Kluge R, Gembardt F, Schultheiss H-P, Schirner M, et al. New function for an old enzyme: NEP deficient mice develop late-onset obesity. PLoS ONE. 2010;5:e12793.

  37. Lew RA, Warner FJ, Hanchapola I, Yarski MA, Ramchand J, Manohar J, et al. Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol. 2008;93:685–93.

    Article  CAS  Google Scholar 

  38. Fernandes L, Fortes ZB, Nigro D, Tostes RC, Santos RA, Catelli De Carvalho MH. Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension. 2001;37:703–9.

    Article  CAS  Google Scholar 

  39. Jaspard E, Alhencgelas F. Catalytic properties of the two active sites of angiotensin i-converting enzyme on the cell surface. Biochem Biophys Res Commun. 1995;211:528–34.

    Article  CAS  Google Scholar 

  40. Abe KC, Mori MA, Pesquero JB. Leptin deficiency leads to the regulation of kinin receptors expression in mice. Regul Pept. 2007;138:56–58. https://doi.org/10.1016/j.regpep.2006.11.018.

    Article  CAS  PubMed  Google Scholar 

  41. Cifuentes M, Fuentes C, Mattar P, Tobar N, Hugo E, Ben-Jonathan N, et al. Obesity-associated proinflammatory cytokines increase calcium sensing receptor (CaSR) protein expression in primary human adipocytes and LS14 human adipose cell line. Arch Biochem Biophys. 2010;500:151–6.

    Article  CAS  Google Scholar 

  42. Medrano L, Amatya K, Vizthum D, Fadrowski JJ, Brady TM. Association of mood disorders with cardiovascular disease risk factors in overweight and obese youth with elevated blood pressure. J Clin Hypertens. 2018;20:1268–75.

    Article  Google Scholar 

  43. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009;30:96–116.

    Article  CAS  Google Scholar 

  44. Paragliola RM, Papi G, Pontecorvi A, Corsello SM. Treatment with synthetic glucocorticoids and the hypothalamus-pituitary-adrenal axis. Int J Mol Sci. 2017;18:2201.

  45. Enhörning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. Int J Obes. 2013;37:598–603.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by FAPESP (51904-9, 2009) and CNPQ (142110/2007-8, 2009). We thank Alexander T. Williams for the careful review of the English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Elena Casarini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, F.B., Fernandes, A.B., Febba, A.C.S. et al. Association of Ang-(1–7) and des-Arg9BK as new biomarkers of obesity and cardiometabolic risk factors in adolescents. Hypertens Res 44, 969–977 (2021). https://doi.org/10.1038/s41440-021-00618-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00618-0

Keywords

This article is cited by

Search

Quick links