Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circadian rhythm of the intrarenal renin–angiotensin system is caused by glomerular filtration of liver-derived angiotensinogen depending on glomerular capillary pressure in adriamycin nephropathy rats

Abstract

Circadian fluctuation disorder of the intrarenal renin–angiotensin system (RAS) causes that of blood pressure (BP) and renal damage. In renal damage with an impaired glomerular filtration barrier, liver-derived angiotensinogen (AGT) filtered through damaged glomeruli regulates intrarenal RAS activity. Furthermore, glomerular permeability is more strongly affected by glomerular hypertension than by systemic hypertension. Thus, we aimed to clarify whether the circadian rhythm of intrarenal RAS activity is influenced by AGT filtered through damaged glomeruli due to glomerular capillary pressure. Rats with adriamycin nephropathy and an impaired glomerular filtration barrier were compared with control rats. In adriamycin nephropathy rats, olmesartan medoxomil (an angiotensin II type 1 receptor blocker) or hydralazine (a vasodilator) was administered, and the levels of intrarenal RAS components in the active and rest phases were evaluated. Moreover, the diameter ratio of afferent to efferent arterioles (A/E ratio), an indicator of glomerular capillary pressure, and the glomerular sieving coefficient (GSC) based on multiphoton microscopy in vivo imaging, which reflects glomerular permeability, were determined. Mild renal dysfunction was induced, and the systemic BP increased, resulting in increased A/E ratios in the adriamycin nephropathy rats compared with the control rats. Fluctuations in intrarenal RAS activity occurred in parallel with circadian fluctuations in glomerular capillary pressure, which disappeared with olmesartan treatment and were maintained with hydralazine treatment. Furthermore, the GSCs for AGT also showed similar changes. In conclusion, intrarenal RAS activity is influenced by the filtration of liver-derived AGT from damaged glomeruli due to circadian fluctuation disorder of the glomerular capillary pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakano D, Kobori H, Burford JL, Gevorgyan H, Seidel S, Hitomi H, et al. Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol. 2012;23:1847–56.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23:1181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon RD, Wolfe LK, Island DP, Liddle GW. A diurnal rhythm in plasma renin activity in man. J Clin Invest. 1966;45:1587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kala R, Fyhrquist F, Eisalo A. Diurnal variation of plasma angiotensin II in man. Scand J Clin Lab Invest. 1973;31:363–5.

    Article  CAS  PubMed  Google Scholar 

  5. Hilfenhaus M. Circadian rhythm of the renin-angiotensin-aldosterone system in the rat. Arch Toxicol. 1976;36:305–16.

    Article  CAS  PubMed  Google Scholar 

  6. Isobe S, Ohashi N, Fujikura T, Tsuji T, Sakao Y, Yasuda H, et al. Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage. Clin Exp Nephrol. 2015;19:231–9.

    Article  CAS  PubMed  Google Scholar 

  7. Isobe S, Ohashi N, Ishigaki S, Tsuji T, Sakao Y, Kato A, et al. Augmented circadian rhythm of the intrarenal renin-angiotensin systems in anti-thymocyte serum nephritis rats. Hypertens Res. 2016;39:312–20.

    Article  CAS  PubMed  Google Scholar 

  8. Ohashi N, Isobe S, Ishigaki S, Yasuda H. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney. Hypertens Res. 2017;40:413–22.

    Article  CAS  PubMed  Google Scholar 

  9. Ohashi N, Ishigaki S, Isobe S. The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin-angiotensin system in the kidney. Hypertens Res. 2019;42:761–8.

    Article  CAS  PubMed  Google Scholar 

  10. Nishijima Y, Kobori H, Kaifu K, Mizushige T, Hara T, Nishiyama A, et al. Circadian rhythm of plasma and urinary angiotensinogen in healthy volunteers and in patients with chronic kidney disease. J Renin Angiotensin Aldosterone Syst. 2014;15:505–8.

    Article  PubMed  CAS  Google Scholar 

  11. Olson JL, Hostetter TH, Rennke HG, Brenner BM, Venkatachalam MA. Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kidney Int. 1982;22:112–26.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson S, Meyer TW, Rennke HG, Brenner BM. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985;76:612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griffin KA, Picken MM, Bidani AK. Deleterious effects of calcium channel blockade on pressure transmission and glomerular injury in rat remnant kidneys. J Clin Invest. 1995;96:793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sandoval RM, Molitoris BA, Palygin O. Fluorescent imaging and microscopy for dynamic processes in rats. Methods Mol Biol. 2019;2018:151–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Satoh M, Kobayashi S, Kuwabara A, Tomita N, Sasaki T, Kashihara N. In vivo visualization of glomerular microcirculation and hyperfiltration in streptozotocin-induced diabetic rats. Microcirculation. 2010;17:103–12.

    Article  CAS  PubMed  Google Scholar 

  16. Sandoval RM, Wagner MC, Patel M, Campos-Bilderback SB, Rhodes GJ, Wang E, et al. Multiple factors influence glomerular albumin permeability in rats. J Am Soc Nephrol. 2012;23:447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakano D, Nishiyama A. Multiphoton imaging of kidney pathophysiology. J Pharm Sci. 2016;132:1–5.

    Article  CAS  Google Scholar 

  18. Okuda S, Oh Y, Tsuruda H, Onoyama K, Fujimi S, Fujishima M. Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. Kidney Int. 1986;29:502–10.

    Article  CAS  PubMed  Google Scholar 

  19. Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology. 2011;16:30–8.

    Article  PubMed  Google Scholar 

  20. Hrenak J, Arendasova K, Rajkovicova R, Aziriova S, Repova K, Krajcirovicova K, et al. Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res. 2013;62 Suppl 1:S181–9.

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, Yamamoto T, Misaki T, Suzuki H, Togawa A, Ohashi N, et al. Enhanced intrarenal receptor-mediated prorenin activation in chronic progressive anti-thymocyte serum nephritis rats on high salt intake. Am J Physiol Ren Physiol. 2012;303:F130–8.

    Article  CAS  Google Scholar 

  22. Hosgood SA, Mohamed IH, Nicholson ML. The two layer method does not improve the preservation of porcine kidneys. Med Sci Monit. 2011;17:BR27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61:579–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto T, Nakagawa T, Suzuki H, Ohashi N, Fukasawa H, Fujigaki Y, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol. 2007;18:1558–65.

    Article  CAS  PubMed  Google Scholar 

  25. Kobori H, Navar LG. Urinary angiotensinogen as a novel biomarker of intrarenal renin-angiotensin system in chronic kidney disease. Int Rev Thromb. 2011;6:108–16.

    PubMed  PubMed Central  Google Scholar 

  26. Ohashi N, Yamamoto T, Huang Y, Misaki T, Fukasawa H, Suzuki H, et al. Intrarenal RAS activity and urinary angiotensinogen excretion in anti-thymocyte serum nephritis rats. Am J Physiol Ren Physiol. 2008;295:F1512–8.

    Article  CAS  Google Scholar 

  27. Ohashi N, Isobe S, Ishigaki S, Suzuki T, Ono M, Fujikura T, et al. Intrarenal renin-angiotensin system activity is augmented after initiation of dialysis. Hypertens Res. 2017;40:364–70.

    Article  CAS  PubMed  Google Scholar 

  28. Ishigaki S, Ohashi N, Matsuyama T, Isobe S, Tsuji N, Iwakura T, et al. Melatonin ameliorates intrarenal renin-angiotensin system in a 5/6 nephrectomy rat model. Clin Exp Nephrol. 2018;22:539–49.

    Article  CAS  PubMed  Google Scholar 

  29. Ganten D, Wagner J, Zeh K, Bader M, Michel JB, Paul M, et al. Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc Natl Acad Sci U S A. 1992;89:7806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Molitoris BA, Sandoval RM. Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Ren Physiol. 2005;288:F1084–9.

    Article  CAS  Google Scholar 

  31. Rosivall L, Mirzahosseini S, Toma I, Sipos A, Peti-Peterdi J. Fluid flow in the juxtaglomerular interstitium visualized in vivo. Am J Physiol Ren Physiol. 2006;291:F1241–7.

    Article  CAS  Google Scholar 

  32. Rhodes GJ. Surgical preparation of rats and mice for intravital microscopic imaging of abdominal organs. Methods. 2017;128:129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kidokoro K, Cherney DZI, Bozovic A, Nagasu H, Satoh M, Kanda E, et al. Evaluation of glomerular hemodynamic function by Empagliflozin in diabetic mice using in vivo imaging. Circulation. 2019;140:303–15.

    Article  CAS  PubMed  Google Scholar 

  34. Monu SR, Ren Y, Masjoan-Juncos JX, Kutskill K, Wang H, Kumar N, et al. Connecting tubule glomerular feedback mediates tubuloglomerular feedback resetting after unilateral nephrectomy. Am J Physiol Ren Physiol. 2018;315:F806–11.

    Article  CAS  Google Scholar 

  35. Peti-Peterdi J. Independent two-photon measurements of albumin GSC give low values. Am J Physiol Ren Physiol. 2009;296:F1255–7.

    Article  CAS  Google Scholar 

  36. Sandoval RM, Molitoris BA. Quantifying glomerular permeability of fluorescent macromolecules using 2-photon microscopy in Munich Wistar rats. J Vis Exp. 2013. https://doi.org/10.3791/50052.

  37. Schiessl IM, Castrop H. Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study. Am J Physiol Ren Physiol. 2013;305:F1189–200.

    Article  CAS  Google Scholar 

  38. Schiessl IM, Kattler V, Castrop H. In vivo visualization of the antialbuminuric effects of the angiotensin-converting enzyme inhibitor enalapril. J Pharm Exp Ther. 2015;353:299–306.

    Article  CAS  Google Scholar 

  39. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharm Rev. 2007;59:251–87.

    Article  CAS  PubMed  Google Scholar 

  40. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension. 2002;39:316–22.

    Article  CAS  PubMed  Google Scholar 

  41. Wuerzner G, Firsov D, Bonny O. Circadian glomerular function: from physiology to molecular and therapeutical aspects. Nephrol Dial Transpl. 2014;29:1475–80.

    Article  Google Scholar 

  42. Bidani AK, Griffin KA, Williamson G, Wang X, Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. Hypertension. 2009;54:393–8.

    Article  CAS  PubMed  Google Scholar 

  43. Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharm. 2014;12:845–58.

    Article  CAS  Google Scholar 

  44. Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su Y, Foppen E, Zhang Z, Fliers E, Kalsbeek A. Effects of 6-meals-a-day feeding and 6-meals-a-day feeding combined with adrenalectomy on daily gene expression rhythms in rat epididymal white adipose tissue. Genes Cells. 2016;21:6–24.

    Article  CAS  PubMed  Google Scholar 

  46. Lew SW, Bosch JP. Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease. J Am Soc Nephrol. 1991;2:856–65.

    Article  CAS  PubMed  Google Scholar 

  47. Bankir L, Roussel R, Bouby N. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. Am J Physiol Ren Physiol. 2015;309:F2–23.

    Article  CAS  Google Scholar 

  48. Gabbai FB. The role of renal response to amino acid infusion and oral protein load in normal kidneys and kidney with acute and chronic disease. Curr Opin Nephrol Hypertens. 2018;27:23–9.

    Article  CAS  PubMed  Google Scholar 

  49. Satoh M, Haruna Y, Fujimoto S, Sasaki T, Kashihara N. Telmisartan improves endothelial dysfunction and renal autoregulation in Dahl salt-sensitive rats. Hypertens Res. 2010;33:135–42.

    Article  CAS  PubMed  Google Scholar 

  50. Tanner GA. Glomerular sieving coefficient of serum albumin in the rat: a two-photon microscopy study. Am J Physiol Ren Physiol. 2009;296:F1258–65.

    Article  CAS  Google Scholar 

  51. Matsusaka T, Niimura F, Pastan I, Shintani A, Nishiyama A, Ichikawa I. Podocyte injury enhances filtration of liver-derived angiotensinogen and renal angiotensin II generation. Kidney Int. 2014;85:1068–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Kengo Kidokoro (Kawasaki Medical School), Dr Daisuke Nakano (Kagawa University), Dr Chiharu Uchida (Hamamatsu University School of Medicine), and Dr Toshiyuki Ojima (Hamamatsu University School of Medicine) for critical technical support and important advice. We also acknowledge Daiichi Sankyo Co. (Tokyo, Japan) for providing olmesartan medoxomil (CS-866). This study was supported by a Grant-in-Aid for Scientific Research (17K09693 to NO) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by grants from the Young Investigator Research Projects of Hamamatsu University School of Medicine in 2018 (awarded to TM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naro Ohashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuyama, T., Ohashi, N., Aoki, T. et al. Circadian rhythm of the intrarenal renin–angiotensin system is caused by glomerular filtration of liver-derived angiotensinogen depending on glomerular capillary pressure in adriamycin nephropathy rats. Hypertens Res 44, 618–627 (2021). https://doi.org/10.1038/s41440-021-00620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00620-6

Keywords

This article is cited by

Search

Quick links