Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sirtuin 6 attenuates angiotensin II-induced vascular adventitial aging in rat aortae by suppressing the NF-κB pathway

Abstract

Adventitia-induced vascular remodeling plays an important role in vascular aging. However, the mechanism remains unclear. In this study, we found that sirtuin 6 (SIRT6) expression was downregulated in the aortae of aged rats compared with those of young rats. Adventitial fibroblasts (AFs) were isolated and cultured from rat aortae to clarify the relationship between SIRT6 expression and vascular aging. Lentivirus-mediated SIRT6 knockdown promoted the aging phenotype in AFs, affecting proliferation, collagen secretion, migration, and α-smooth muscle actin expression. Moreover, angiotensin II (Ang II) decreased SIRT6 expression, activated the NF-κB pathway, and led to vascular aging. The NF-κB pathway inhibitor BAY 11-7082 reduced Ang II-induced nuclear translocation of the NF-κB p65 subunit and other effects of Ang II, such as AF proliferation, collagen secretion, and migration. Mechanistically, SIRT6 suppression increased acetyl-NF-κB p65 (Lys310) expression and NF-κB transcriptional activity in SIRT6-knockdown AFs. SIRT6 could directly bind to the p65 subunit and attenuate Ang II-induced NF-κB activation and vascular aging. In summary, this study was the first to correlate SIRT6 expression and adventitia-induced vascular senescence. SIRT6 maybe a biomarker of vascular aging, and activating SIRT6 maybe a therapeutic strategy for delaying vascular aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci. 2010;65:1028–1041.

    Article  PubMed  Google Scholar 

  2. Nakamura T, Saito Y, Ohyama Y, Masuda H, Sumino H, Kuro-o M, et al. Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol. 2002;89:149–156.

    Article  CAS  PubMed  Google Scholar 

  3. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  4. Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res. 2007;75:679–689.

    Article  CAS  PubMed  Google Scholar 

  5. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res. 2001;89:1111–1121.

    Article  CAS  PubMed  Google Scholar 

  6. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8:1249–1256.

    Article  CAS  PubMed  Google Scholar 

  7. Sun H, Wu Y, Fu D, Liu Y, Huang C. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-kappaB signaling pathway. Stem Cells. 2014;32:1943–1955.

    Article  CAS  PubMed  Google Scholar 

  8. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483:218–221.

    Article  CAS  PubMed  Google Scholar 

  9. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–329.

    Article  CAS  PubMed  Google Scholar 

  10. Gertler AA, Cohen HY. SIRT6, a protein with many faces. Biogerontology. 2013;14:629–639.

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Tian T, Wang Y, Li Z, Xing K, Tian G. SIRT6 protects vascular endothelial cells from angiotensin II-induced apoptosis and oxidative stress by promoting the activation of Nrf2/ARE signaling. Eur J Pharmacol. 2019;859:172516.

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Xiao Y, Yang X, Li Y, Wang B, Yao F, et al. SIRT6 inhibits TNF-alpha-induced inflammation of vascular adventitial fibroblasts through ROS and Akt signaling pathway. Exp Cell Res. 2017;357:88–97.

    Article  CAS  PubMed  Google Scholar 

  13. Kida Y, Goligorsky MS. Sirtuins, cell senescence, and vascular aging. Can J Cardiol. 2016;32:634–641.

    Article  PubMed  Google Scholar 

  14. Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013;97:571–579.

    Article  CAS  PubMed  Google Scholar 

  15. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009;136:62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang W, Yan C, Zhang J, Lin R, Lin Q, Yang L, et al. SIRT1 inhibits TNF-alpha-induced apoptosis of vascular adventitial fibroblasts partly through the deacetylation of FoxO1. Apoptosis. 2013;18:689–701.

    Article  CAS  PubMed  Google Scholar 

  17. Dong X, Ye X, Song N, Zhao J, Di B, Peng F, et al. Urotensin II promotes the production of LTC4 in rat aortic adventitial fibroblasts through NF-kappaB-5-LO pathway by p38 MAPK and ERK activations. Heart Vessels. 2013;28:514–523.

    Article  PubMed  Google Scholar 

  18. Zhang J, Fang C, Qu M, Wu H, Wang X, Zhang H, et al. CD13 inhibition enhances cytotoxic effect of chemotherapy agents. Front Pharmacol. 2018;9:1042.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suzuki A, Osanai T, Tanaka M, Tomita H, Magota K, Okumura K. Coupling factor 6 attenuates CXCR4 expression through the HIF-1alpha and c-Src pathways and promotes endothelial apoptosis and inflammation. Hypertens Res. 2014;37:708–715.

    Article  CAS  PubMed  Google Scholar 

  20. Yang D, Xiao C, Long F, Wu W, Huang M, Qu L, et al. Fra-1 plays a critical role in angiotensin II-induced vascular senescence. FASEB J. 2019;33:7603–7614.

    Article  CAS  PubMed  Google Scholar 

  21. Avila VF, Foresto-Neto O, Arias SCA, Faustino VD, Malheiros D, Camara NOS, et al. Pathogenic role of angiotensin II and the NF-kappaB system in a model of malignant hypertensive nephrosclerosis. Hypertens Res. 2019;42:779–789.

    Article  CAS  PubMed  Google Scholar 

  22. Hu S, Luo Q, Cun B, Hu D, Ge S, Fan X, et al. The pharmacological NF-kappaB inhibitor BAY11-7082 induces cell apoptosis and inhibits the migration of human uveal melanoma cells. Int J Mol Sci. 2012;13:15653–15667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tschudi MR, Lüscher TF. Age and hypertension differently affect coronary contractions to endothelin-1, serotonin, and angiotensins. Circulation. 1995;91:2415–2422.

    Article  CAS  PubMed  Google Scholar 

  24. Leosco D, Iaccarino G, Cipolletta E. Exercise restores beta-adrenergic vasorelaxation in aged rat carotid arteries. Am J Physiol Heart Circ Physiol. 2003;285:H369–374.

    Article  CAS  PubMed  Google Scholar 

  25. Lee YH, Lee HY, Kim TG, Lee NH, Yu MK, Yi HK. PPAR gamma maintains homeostasis through autophagy regulation in dental pulp. J Dent Res. 2015;94:729–737.

    Article  CAS  PubMed  Google Scholar 

  26. Baylis C, Fredericks M, Wilson C. Renal vasodilatory response to intravenous glycine in the aging rat kidney. Am J Kidney Dis. 1990;15:244–251.

    Article  CAS  PubMed  Google Scholar 

  27. Bersi MR, Bellini C, Wu J, Montaniel KRC, Harrison DG, Humphrey JD. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension. 2016;67:890–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McGrath JC, Deighan C, Briones AM, Shafaroudi MM, McBride M, Adler J, et al. New aspects of vascular remodelling: the involvement of all vascular cell types. Exp Physiol. 2005;90:469–475.

    Article  PubMed  Google Scholar 

  29. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation. 1996;93:2178–2187.

    Article  CAS  PubMed  Google Scholar 

  30. Faggin E, Puato M, Zardo L, Franch R, Millino C, Sarinella F, et al. Smooth muscle-specific SM22 protein is expressed in the adventitial cells of balloon-injured rabbit carotid artery. Arterioscler Thromb Vasc Biol. 1999;19:1393–1404.

    Article  CAS  PubMed  Google Scholar 

  31. Li G, Chen SJ, Oparil S, Chen YF, Thompson JA. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation. 2000;101:1362–1365.

    Article  CAS  PubMed  Google Scholar 

  32. Han X, Wu A, Wang J, Chang H, Zhao Y, Zhang Y, et al. Activation and migration of adventitial fibroblasts contributes to vascular remodeling. Anat Rec. 2018;301:1216–1223.

    Article  CAS  Google Scholar 

  33. Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, et al. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013;75:23–47.

    Article  CAS  PubMed  Google Scholar 

  34. Tasselli L, Zheng W, Chua KF. SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab. 2017;28:168–185.

    Article  CAS  PubMed  Google Scholar 

  35. Liu R, Liu H, Ha Y, Tilton RG, Zhang W. Oxidative stress induces endothelial cell senescence via downregulation of Sirt6. Biomed Res Int. 2014;2014:902842.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu S, Yin M, Koroleva M, Mastrangelo MA, Zhang W, Bai P, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging. 2016;8:1064–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu Y, Li R, Yang H, Luo H, Chen Z. Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusion-stimulated brain endothelial cells. J Stroke Cerebrovasc Dis. 2015;24:601–609.

    Article  PubMed  Google Scholar 

  38. Tian K, Liu Z, Wang J, Xu S, You T, Liu P. Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor kappaB signaling. Transl Res. 2015;165:374–386.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang W, Wei R, Zhang L, Tan Y, Qian C. Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience. 2017;366:95–104.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang ZZ, Cheng YW, Jin HY, Chang Q, Shang QH, Xu YL, et al. The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget. 2017;8:72302–72314.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC, et al. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kappaB-driven inflammation and cardiovascular risk. Proc Natl Acad Sci USA. 2019;116:11370–11379.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Province Science and Technology Development Plan Project (2014GSF118043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jiang, D., Huang, W. et al. Sirtuin 6 attenuates angiotensin II-induced vascular adventitial aging in rat aortae by suppressing the NF-κB pathway. Hypertens Res 44, 770–780 (2021). https://doi.org/10.1038/s41440-021-00631-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00631-3

Keywords

This article is cited by

Search

Quick links