Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Re-evaluating hypertension in children according to different guidelines: a single-center study

Abstract

We aimed to evaluate the agreements between the guidelines used for both office blood pressure (OBP) and ambulatory blood pressure monitoring (ABPM). Our secondary aim was to define the best threshold to assess children at risk of left ventricular hypertrophy (LVH). Thresholds proposed by the Fourth Report (FR), European Society of Hypertension (ESH), and American Academy of Pediatrics (AAP) for OBP and the Wühl, ESH, and American Heart Association (AHA) for ABPM were used, and nine different BP phenotype combinations were created. The agreements between the thresholds, the sensitivity of the thresholds, and the BP phenotypes used to predict LVH were determined in 949 patients with different ages and body mass indices (BMIs). The agreements between the guidelines for OBP and ABPM were “good” and “very good” (κ = 0.639; 95% CI, 0.638–0.640, κ = 0.986; 95% CI, 0.985–0.988), respectively. To classify OBP and ABPM into BP phenotypes, we obtained nine different combinations, which had “very good” agreement (κ = 0.880; 95% CI, 0.879–0.880). The sensitivity of AAP for detecting LVH was the highest in <12-year-old obese children (S = 75.8, 95% CI, 56.4–89.7). The sensitivity of ABPM in detecting LVH was similar among different age and BMI groups. The sensitivity of different BP phenotypes tended to be higher in the groups where OBP was evaluated according to AAP. The highest sensitivity was detected in the 13- to 15-year-old normal weight group.(S: 88.8, 95% CI, 51.7–99.7). The AAP guideline is more sensitive and decisive for BP phenotypes to detect LVH, especially in normal-weight children ≤ 15 years, while ABPM thresholds for children have limited effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available.

References

  1. Guzman-Limon M, Samuels J. Pediatric hypertension: diagnosis, evaluation, and treatment. Pediatr Clin North Am. 2019;66:45–57. https://doi.org/10.1016/j.pcl.2018.09.001. PMID: 30454750.

    Article  PubMed  Google Scholar 

  2. Awazu M Hypertension. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N (Eds). Pediatric Nephrology, six edition. Berlin Heidelberg, Springer Verlag. 2009;1457–41.

  3. Kjeldsen SE. Hypertension and cardiovascular risk: General aspects. Pharm Res. 2018;129:95–99. https://doi.org/10.1016/j.phrs.2017.11.003. Epub 2017 Nov 7. PMID: 29127059.

    Article  Google Scholar 

  4. Stergiou GS, Nasothimiou E, Giovas P, Kapoyiannis A, Vazeou A. Diagnosis of hypertension in children and adolescents based on home versus ambulatory blood pressure monitoring. J Hypertens. 2008;26:1556–62. https://doi.org/10.1097/HJH.0b013e328301c411. PMID: 18622232.

    Article  CAS  PubMed  Google Scholar 

  5. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, et al. American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension 2014;63:1116–35. https://doi.org/10.1161/HYP.0000000000000007. Epub 2014 Mar 3. PMID: 24591341; PMCID: PMC4146525.

    Article  CAS  PubMed  Google Scholar 

  6. Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, et al. Office versus Ambulatory Pressure Study Investigators. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N. Engl J Med. 2003;348:2407–15. https://doi.org/10.1056/NEJMoa022273. PMID: 12802026.

    Article  PubMed  Google Scholar 

  7. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004;114:555–76. PMID: 15286277.

    Article  Google Scholar 

  8. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–920. https://doi.org/10.1097/HJH.0000000000001039. PMID: 27467768.

    Article  CAS  PubMed  Google Scholar 

  9. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Subcommittee on screening and management of high blood pressure in children. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017;140:e20171904 https://doi.org/10.1542/peds.2017-1904. Epub 2017 Aug 21. Erratum in: Pediatrics. 2017 Nov 30;: Erratum in: Pediatrics. 2018 Sep;142(3): PMID: 28827377.

    Article  PubMed  Google Scholar 

  10. Wühl E, Witte K, Soergel M, Mehls O, Schaefer F. German Working Group on Pediatric Hypertension. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20:1995–2007. https://doi.org/10.1097/00004872-200210000-00019. Erratum in: J Hypertens. 2003 Nov; 21(11):2205-6. PMID: 12359978.

    Article  PubMed  Google Scholar 

  11. Whelton PK, Carey RM, Aronow WS, Casey DE,Jr, Collins KJ, Dennison Himmelfarb C. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS /APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:e13–e115. https://doi.org/10.1161/HYP.0000000000000065. Epub 2017 Nov 13. Erratum in: Hypertension. 2018 Jun;71(6):e140-e144. PMID: 29133356.

    Article  CAS  PubMed  Google Scholar 

  12. Sivén SS, Niiranen TJ, Kantola IM, Jula AM. White-coat and masked hypertension as risk factors for progression to sustained hypertension: the Finn-Home study. J Hypertens. 2016;34:54–60. https://doi.org/10.1097/HJH.0000000000000750. PMID: 26630213.

    Article  CAS  PubMed  Google Scholar 

  13. Lurbe E, Torro I, Alvarez V, Nawrot T, Paya R, Redon J. et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45:493–8. https://doi.org/10.1161/01.HYP.0000160320.39303.ab. Epub 2005 Mar 14. PMID: 15767467.

    Article  CAS  PubMed  Google Scholar 

  14. Sega R, Trocino G, Lanzarotti A, Carugo S, Cesana G, Schiavina R. et al. Alterations of cardiac structure in patients with isolated office, ambulatory, or home hypertension: Data from the general population (Pressione Arteriose Monitorate E Loro Associazioni [PAMELA] Study). Circulation. 2001;104:1385–92. https://doi.org/10.1161/hc3701.096100. PMID: 11560854.

    Article  CAS  PubMed  Google Scholar 

  15. Björklund K, Lind L, Zethelius B, Andrén B, Lithell H. Isolated ambulatory hypertension predicts cardiovascular morbidity in elderly men. Circulation. 2003;107:1297–302. https://doi.org/10.1161/01.cir.0000054622.45012.12

    Article  PubMed  Google Scholar 

  16. Neyzi O, Bundak R, Gökçay G, Günöz H, Furman A, Darendeliler F, et al. Reference values for weight, height, head circumference, and body mass index in Turkish children. J Clin Res Pediatr Endocrinol. 2015;7:280–93. https://doi.org/10.4274/jcrpe.2183. PMID: 26777039; PMCID: PMC4805217.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Demir K, Konakçı E, Özkaya G, Kasap Demir B, Özen S, Aydın M, et al. New features for child metrics: further growth references and blood pressure calculations. J Clin Res Pediatr Endocrinol 2020;12:125–9. https://doi.org/10.4274/jcrpe.galenos.2019.2019.0127. Epub 2019 Sep 2. PMID: 31475511; PMCID: PMC7291402.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anat Valid Method Circ. 1977;55:613–8. https://doi.org/10.1161/01.cir.55.4.613. PMID: 138494.

    Article  CAS  Google Scholar 

  19. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22:709–14. https://doi.org/10.1016/j.echo.2009.03.003. Epub 2009 May 7. PMID: 19423289.

    Article  PubMed  Google Scholar 

  20. Antolini L, Giussani M, Orlando A, Nava E, Valsecchi MG, Parati G, et al. Nomograms to identify elevated blood pressure values and left ventricular hypertrophy in a paediatric population: American Academy of Pediatrics Clinical Practice vs. Fourth Report/European Society of Hypertension Guidelines. J Hypertens. 2019;37:1213–22. https://doi.org/10.1097/HJH.0000000000002069. PMID: 31022109.

    Article  CAS  PubMed  Google Scholar 

  21. Samuel JP, Bell CS, Hebert SA, Varughese A, Samuels JA, Tyson JE. Office blood pressure measurement alone often misclassifies treatment status in children with primary hypertension. Blood Press Monit. 2017;22:328–32. https://doi.org/10.1097/MBP.0000000000000299. PMID: 29076885; PMCID: PMC5679273.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hamdani G, Mitsnefes MM, Flynn JT, Becker RC, Daniels S, Falkner BE et al. Pediatric and adult ambulatory blood pressure thresholds and blood pressure load as predictors of left ventricular hypertrophy in adolescents. Hypertension. 2021 May: HYPERTENSIONAHA12016896. https://doi.org/10.1161/HYPERTENSIONAHA.120.16896. Epub ahead of print. PMID: 33966453.

  23. Thomas J, Stonebrook E, Klamer B, Patel HP, Kallash M. Challenges of diagnosing pediatric hypertension using ambulatory blood pressure monitoring. Pediatr Nephrol. 2021;36:373–8. https://doi.org/10.1007/s00467-020-04725-x. Epub 2020 Aug 6. PMID: 32761266.

    Article  PubMed  Google Scholar 

  24. Lurbe E, Torró I, Álvarez J, Aguilar F, Mancia G, Redon J, et al. Impact of ESH and AAP hypertension guidelines for children and adolescents on office and ambulatory blood pressure-based classifications. J Hypertens. 2019;37:2414–21. https://doi.org/10.1097/HJH.0000000000002229

    Article  CAS  PubMed  Google Scholar 

  25. Sharma A, Altamirano-Diaz L, Grattan M, Filler G, Sharma AP. Comparative analysis of American Heart Association and European Society of Hypertension Ambulatory Blood Pressure Thresholds for Diagnosing Hypertension in Children. Kidney Int Rep. 2020;5:611–7. https://doi.org/10.1016/j.ekir.2020.01.017. PMID: 32405582; PMCID: PMC7210743.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42(Sep):1235–481. https://doi.org/10.1038/s41440-019-0284-9. PMID: 31375757.

    Article  PubMed  Google Scholar 

  27. Yegül-Gülnar G, Kasap-Demir B, Alparslan C, Çatli G, Mutlubaş F, Yavaşcan Ö, et al. Ambulatory blood pressure monitoring parameters in obese children and adolescents with masked hypertension. Blood Press Monit. 2019;24:277–83. https://doi.org/10.1097/MBP.0000000000000402. PMID: 31567187.

    Article  PubMed  Google Scholar 

  28. Hashimoto I, Ichida F, Tsubata S, Hamamichi Y, Uese K, Miyazaki A, et al. A novel method for indexing echocardiographic left ventricular mass in infants, children and adolescents: evaluation of obesity-induced left ventricular hypertrophy. Pediatr Int. 1999;41(Apr):126–31. https://doi.org/10.1046/j.1442-200x.1999.4121047.x. PMID: 10221013.

    Article  CAS  PubMed  Google Scholar 

  29. Khoury M, Khoury PR, Dolan LM, Kimball TR, Urbina EM. Clinical implications of the revised AAP Pediatric Hypertension Guidelines. Pediatrics 2018;142(Aug):e20180245 https://doi.org/10.1542/peds.2018-0245. Epub 2018 Jul 5. PMID: 29976572; PMCID: PMC6317543.

    Article  PubMed  Google Scholar 

Download references

Funding

No financial or nonfinancial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Contributions

CB conceptualized and designed the study, performed data analysis, and drafted the initial manuscript. BKD reviewed and revised the manuscript; FM, DA, and SAC assisted with the data analysis and critically reviewed the manuscript for important intellectual content; CA, GE and OS assisted with the study design and reviewed and revised the manuscript. FE and MAT reviewed the statistical analysis.

Corresponding author

Correspondence to Cemaliye Basaran.

Ethics declarations

Ethics approval

Ethical approval was obtained.

Consent for publication

All authors consent to the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basaran, C., Kasap Demir, B., Tekindal, M.A. et al. Re-evaluating hypertension in children according to different guidelines: a single-center study. Hypertens Res 45, 1047–1057 (2022). https://doi.org/10.1038/s41440-022-00896-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00896-2

Keywords

This article is cited by

Search

Quick links