Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • ISH2022 KYOTO- Fast track: Current evidence and perspectives for hypertension management in Asia
  • Published:

Associations of ambient manganese exposure with brain gray matter thickness and white matter hyperintensities

A Comment to this article was published on 09 June 2023

Abstract

Manganese (Mn) exposure is associated with increased risks of dementia and cerebrovascular disease. However, evidence regarding the impact of ambient Mn exposure on brain imaging markers is scarce. We aimed to investigate the association between ambient Mn exposure and brain imaging markers representing neurodegeneration and cerebrovascular lesions. We recruited a total of 936 adults (442 men and 494 women) without dementia, movement disorders, or stroke from the Republic of Korea. Ambient Mn concentrations were predicted at each participant’s residential address using spatial modeling. Neurodegeneration-related brain imaging markers, such as the regional cortical thickness, were estimated using 3 T brain magnetic resonance images. White matter hyperintensity volume (an indicator of cerebrovascular lesions) was also obtained from a certain number of participants (n = 397). Linear regression analyses were conducted after adjusting for potential confounders. A log-transformed ambient Mn concentration was associated with thinner parietal (β = −0.02 mm; 95% confidence interval [CI], −0.05 to −0.01) and occipital cortices (β = −0.03 mm; 95% CI, −0.04 to −0.01) after correcting for multiple comparisons. These associations remained statistically significant in men. An increase in the ambient Mn concentration was also associated with a greater volume of deep white matter hyperintensity in men (β = 772.4 mm3, 95% CI: 36.9 to 1508.0). None of the associations were significant in women. Our findings suggest that ambient Mn exposure may induce cortical atrophy in the general adult population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Götte W, et al. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis. 2003;24:63–73. https://doi.org/10.1093/carcin/24.1.63.

    Article  CAS  PubMed  Google Scholar 

  2. Klaassen CD. Casarett and Doull’s toxicology: the basic science of poisons. Ninth edition. ed. New York: McGraw-Hill Education; 2019.

  3. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witkowska D, Slowik J, Chilicka K. Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Molecules. 2021;26. https://doi.org/10.3390/molecules26196060.

  5. Vetrimurugan E, Brindha K, Elango L, Ndwandwe OM. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl Water Sci. 2017;7:3267–80. https://doi.org/10.1007/s13201-016-0472-6

    Article  CAS  Google Scholar 

  6. Sharma SD. Risk assessment via oral and dermal pathways from heavy metal polluted water of Kolleru lake - A Ramsar wetland in Andhra Pradesh, India. Environ Anal Health Toxicol. 2020;35:e2020019. https://doi.org/10.5620/eaht.2020019.

    Article  PubMed  Google Scholar 

  7. Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990;3:202–19.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JH, Byun HM, Chung EC, Chung HY, Bae ON. Loss of integrity: impairment of the blood-brain barrier in heavy metal-associated ischemic stroke. Toxicol Res. 2013;29:157–64. https://doi.org/10.5487/TR.2013.29.3.157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gundacker C, Hengstschlager M. The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr. 2012;162:201–6. https://doi.org/10.1007/s10354-012-0074-3.

    Article  PubMed  Google Scholar 

  10. Tuschl K, Mills PB, Clayton PT. Manganese and the brain. Int Rev Neurobiol. 2013;110:277–312. https://doi.org/10.1016/B978-0-12-410502-7.00013-2.

    Article  CAS  PubMed  Google Scholar 

  11. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. curr environ. Health Rep. 2015;2:315–28. https://doi.org/10.1007/s40572-015-0056-x.

    Article  CAS  Google Scholar 

  12. Lee EY, Flynn MR, Lewis MM, Mailman RB, Huang X. Welding-related brain and functional changes in welders with chronic and low-level exposure. Neurotoxicology. 2018;64:50–9. https://doi.org/10.1016/j.neuro.2017.06.011.

    Article  CAS  PubMed  Google Scholar 

  13. Antonini JM, Santamaria AB, Jenkins NT, Albini E, Lucchini R. Fate of manganese associated with the inhalation of welding fumes: potential neurological effects. Neurotoxicology. 2006;27:304–10. https://doi.org/10.1016/j.neuro.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  14. Lin G, Li X, Cheng X, Zhao N, Zheng W. Manganese exposure aggravates beta-amyloid pathology by microglial activation. Front Aging Neurosci. 2020;12:556008. https://doi.org/10.3389/fnagi.2020.556008.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma A, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, et al. Manganese nanoparticles induce blood-brain barrier disruption, cerebral blood flow reduction, edema formation and brain pathology associated with cognitive and motor dysfunctions. Prog Brain Res. 2021;265:385–406. https://doi.org/10.1016/bs.pbr.2021.06.015.

    Article  PubMed  Google Scholar 

  16. Saar G, Koretsky AP. Manganese enhanced MRI for use in studying neurodegenerative diseases. Front Neural Circuits. 2019;12. https://doi.org/10.3389/fncir.2018.00114.

  17. Noh Y, Jeon S, Lee JM, Seo SW, Kim GH, Cho H, et al. Anatomical heterogeneity of Alzheimer disease: based on cortical thickness on MRIs. Neurology. 2014;83:1936–44. https://doi.org/10.1212/WNL.0000000000001003.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cho J, Noh Y, Kim SY, Sohn J, Noh J, Kim W, et al. Long-term ambient air pollution exposures and brain imaging markers in korean adults: the environmental pollution-induced neurological EFfects (EPINEF) study. Environ Health Perspect. 2020;128:117006. https://doi.org/10.1289/EHP7133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manek E, Petroianu GA. Brain delivery of antidotes by polymeric nanoparticles. J Appl Toxicol. 2021;41:20–32. https://doi.org/10.1002/jat.4029.

    Article  CAS  PubMed  Google Scholar 

  20. McDuffie EE, Martin RV, Spadaro JV, Burnett R, Smith SJ, O’Rourke P, et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat Commun. 2021;12:3594. https://doi.org/10.1038/s41467-021-23853-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sampson PD, Richards M, Szpiro AA, Bergen S, Sheppard L, Larson TV, et al. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos Environ (1994). 2013;75:383–92. https://doi.org/10.1016/j.atmosenv.2013.04.015.

    Article  CAS  PubMed  Google Scholar 

  22. Kim SY, Song I. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea. Environ Pollut. 2017;226:21–9. https://doi.org/10.1016/j.envpol.2017.03.056.

    Article  CAS  PubMed  Google Scholar 

  23. Sedgwick P. Limits of agreement (Bland-Altman method). BMJ. 2013;346:f1630. https://doi.org/10.1136/bmj.f1630.

    Article  PubMed  Google Scholar 

  24. Rubino A, Assogna F, Piras F, Di Battista ME, Imperiale F, Chiapponi C, et al. Does a volume reduction of the parietal lobe contribute to freezing of gait in Parkinson’s disease? Parkinsonism Relat Disord. 2014;20:1101–3. https://doi.org/10.1016/j.parkreldis.2014.07.002.

    Article  PubMed  Google Scholar 

  25. Pelizzari L, Di Tella S, Rossetto F, Laganà MM, Bergsland N, Pirastru A, et al. Parietal perfusion alterations in parkinson’s disease patients without dementia. Front Neurol. 2020;11. https://doi.org/10.3389/fneur.2020.00562.

  26. Bharti K, Suppa A, Tommasin S, Zampogna A, Pietracupa S, Berardelli A, et al. Neuroimaging advances in Parkinson’s disease with freezing of gait: A systematic review. Neuroimage Clin. 2019;24:102059. https://doi.org/10.1016/j.nicl.2019.102059.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marquez JS, Hasan SMS, Siddiquee MR, Luca CC, Mishra VR, Mari Z, et al. Neural correlates of freezing of gait in Parkinson’s disease: an electrophysiology mini-review. Front Neurol. 2020;11:571086. https://doi.org/10.3389/fneur.2020.571086.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12:7519–40. https://doi.org/10.3390/ijerph120707519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kulshreshtha D, Ganguly J, Jog M. Manganese and movement disorders: a review. J Mov Disord. 2021;14:93–102. https://doi.org/10.14802/jmd.20123.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Racette BA, Nelson G, Dlamini WW, Prathibha P, Turner JR, Ushe M, et al. Severity of parkinsonism associated with environmental manganese exposure. Environ Health. 2021;20:27. https://doi.org/10.1186/s12940-021-00712-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pieperhoff P, Südmeyer M, Dinkelbach L, Hartmann CJ, Ferrea S, Moldovan AS, et al. Regional changes of brain structure during progression of idiopathic Parkinson’s disease – A longitudinal study using deformation based morphometry. Cortex. 2022;151:188–210. https://doi.org/10.1016/j.cortex.2022.03.009

    Article  PubMed  Google Scholar 

  32. Silbert LC, Kaye J. Neuroimaging and cognition in Parkinson’s disease dementia. Brain Pathol. 2010;20:646–53. https://doi.org/10.1111/j.1750-3639.2009.00368.x.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu S, Seidlitz J, Blumenthal JD, Clasen LS, Raznahan A. Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc Natl Acad Sci U. S. A. 2020;117:18788–98. https://doi.org/10.1073/pnas.1919091117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cserbik D, Chen JC, McConnell R, Berhane K, Sowell ER, Schwartz J, et al. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ Int. 2020;143:105933. https://doi.org/10.1016/j.envint.2020.105933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cole M, Bale, Thompson. What the hippocampus tells the HPA axis: hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF+ PVN neurons. Neurobiology of Stress. 2022;20. https://doi.org/10.1016/j.ynstr.2022.100473.

  36. Pines A. Alzheimer’s disease, menopause and the impact of the estrogenic environment. Climacteric. 2016;19:430–2. https://doi.org/10.1080/13697137.2016.1201319.

    Article  CAS  PubMed  Google Scholar 

  37. Henderson VW. Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol. 2014;142:99–106. https://doi.org/10.1016/j.jsbmb.2013.05.010.

    Article  CAS  PubMed  Google Scholar 

  38. Davey DA. Alzheimer’s disease, dementia, mild cognitive impairment and the menopause: a ‘window of opportunity’? Womens Health (Lond). 2013;9:279–90. https://doi.org/10.2217/whe.13.22.

    Article  CAS  PubMed  Google Scholar 

  39. Kelly DM, Rothwell PM. Blood pressure and the brain: the neurology of hypertension. Pract Neurol. 2020;20:100–8. https://doi.org/10.1136/practneurol-2019-002269.

    Article  PubMed  Google Scholar 

  40. Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, et al. Pathogenetic Mechanisms of hypertension-brain-induced complications: focus on molecular mediators. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23052445.

  41. Scuteri A, Antonelli, Incalzi R. Subclinical HMOD in hypertension: brain imaging and cognitive function. High Blood Press Cardiovasc Prev. 2022;29:577–83. https://doi.org/10.1007/s40292-022-00546-1.

    Article  PubMed  Google Scholar 

  42. Nordberg G, ScienceDirect. Handbook on the toxicology of metals. 3rd ed. Amsterdam; Boston: Academic Press; 2007.

  43. Aschner M, Costa LG. Neurotoxicity of metals: old issues and new developments. Amsterdam, Netherlands; Oxford, England; Cambridge, Massachusetts: Elsevier; 2021.

  44. Rabin O, Hegedus L, Bourre JM, Smith QR. Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem. 1993;61:509–17. https://doi.org/10.1111/j.1471-4159.1993.tb02153.x.

    Article  CAS  PubMed  Google Scholar 

  45. Bornhorst J, Wehe CA, Huwel S, Karst U, Galla HJ, Schwerdtle T. Impact of manganese on and transfer across blood-brain and blood-cerebrospinal fluid barrier in vitro. J Biol Chem. 2012;287:17140–51. https://doi.org/10.1074/jbc.M112.344093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garner CD, Nachtman JP. Manganese catalyzed auto-oxidation of dopamine to 6-hydroxydopamine in vitro. Chem Biol Interact. 1989;69:345–51. https://doi.org/10.1016/0009-2797(89)90120-8.

    Article  CAS  PubMed  Google Scholar 

  47. Oulhote Y, Mergler D, Bouchard MF. Sex- and age-differences in blood manganese levels in the U.S. general population: national health and nutrition examination survey 2011-2012. Environ Health. 2014;13:87. https://doi.org/10.1186/1476-069X-13-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Korea Environment Industry & Technology Institute (KEITI) through the Core Technology Development Project for Environmental Diseases Prevention and Management, funded by the Korea Ministry of Environment (MOE) (grant No.2022003310011), and a faculty research grant (grant No. 6-2021-0245) from the Yonsei University College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

CK supervised the study and JC designed the study. SW wrote the original draft and analyzed the data. Validation: YN, S-BK, S-KL, JL, HHK, and S-YK. Conceptualization: JC and CK. Writing, review and editing: JC and CK. Funding acquisition: CK.

Corresponding authors

Correspondence to Jaelim Cho or Changsoo Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S., Noh, Y., Koh, SB. et al. Associations of ambient manganese exposure with brain gray matter thickness and white matter hyperintensities. Hypertens Res 46, 1870–1879 (2023). https://doi.org/10.1038/s41440-023-01291-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01291-1

Keywords

This article is cited by

Search

Quick links