Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

2023 update and perspectives

Abstract

Total 276 manuscripts were published in Hypertension Research in 2022. Here our editorial members picked up the excellent papers, summarized the current topics from the published papers and discussed future perspectives in the sixteen fields. We hope you enjoy our special feature, 2023 update and perspectives in Hypertension Research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hoshide S, Yamamoto K, Katsurada K, Yano Y, Nishiyama A, Wang JG, et al. Agreement regarding overcoming hypertension in the Asian Hypertension Society Network 2022. Hypertens Res. 2023;46:3–8.

    Article  PubMed  Google Scholar 

  2. Node K, Kishi T, Tanaka A, Itoh H, Rakugi H, Ohya Y, et al. The Japanese Society of Hypertension-Digest of plan for the future. Hypertens Res. 2018;41:989–90.

    Article  PubMed  Google Scholar 

  3. Takase H, Hayashi K, Kin F, Nakano S, Machii M, Takayama S, et al. Dietary salt intake predicts future development of metabolic syndrome in the general population. Hypertens Res. 2023;46:236–43.

    Article  CAS  PubMed  Google Scholar 

  4. Falkner B, Gidding SS, Baker-Smith CM, Brady TM, Flynn JT, Malle LM, et al. Pediatric primary hypertension: an underrecognized condition: a scientific statement from the American Heart Association. Hypertension 2023;80:e101–e11.

    Article  CAS  PubMed  Google Scholar 

  5. Sasaki N, Maeda R, Ozono R, Yoshimura K, Nakano Y, Higashi Y. Adipose tissue insulin resistance predicts the incidence of hypertension: the Hiroshima study on glucose metabolism and cardiovascular diseases. Hypertens Res. 2022;45:1763–71.

    Article  CAS  PubMed  Google Scholar 

  6. Song Z, He Y, Chiang C, Al-Shoaibi AAA, Saif-Ur-Rahman KM, Mamun MR, et al. Long-term variability and change trend of systolic blood pressure and risk of type 2 diabetes mellitus in middle-aged Japanese individuals: findings of the Aichi Workers' Cohort Study. Hypertens Res. 2022;45:1772–80.

    Article  CAS  PubMed  Google Scholar 

  7. Gnanenthiran SR, Wang N, Di Tanna GL, Salam A, Webster R, de Silva HA, et al. Association of low-dose triple combination therapy vs usual care with time at target blood pressure: a secondary analysis of the TRIUMPH randomized clinical trial. JAMA Cardiol. 2022;7:645–50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tanaka A, Node K. Hypertension in diabetes care: emerging roles of recent hypoglycemic agents. Hypertens Res. 2021;44:897–905.

    Article  PubMed  Google Scholar 

  9. Shiina K, Tomiyama H, Tanaka A, Imai T, Hisauchi I, Taguchi I, et al. Canagliflozin independently reduced plasma volume from conventional diuretics in patients with type 2 diabetes and chronic heart failure: a subanalysis of the CANDLE trial. Hypertens Res. 2023;46:495–506.

    Article  CAS  PubMed  Google Scholar 

  10. Kario K, Hoshide S, Mogi M. Digital hypertension 2023: concept, hypothesis, and new technology. Hypertens Res. 2022;45:1529–30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsuoka R, Akazawa H, Kodera S, Komuro I. The dawning of the digital era in the management of hypertension. Hypertens Res. 2020;43:1135–40.

    Article  PubMed  Google Scholar 

  12. Nakagami H. New wave of digital hypertension management for clinical applications. Hypertens Res. 2022;45:1549–51.

    Article  PubMed  Google Scholar 

  13. Burke LE, Ma J, Azar KM, Bennett GG, Peterson ED, Zheng Y, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2015;132:1157–213.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kario K, Shimbo D, Tomitani N, Kanegae H, Schwartz JE, Williams B. The first study comparing a wearable watch-type blood pressure monitor with a conventional ambulatory blood pressure monitor on in-office and out-of-office settings. J Clin Hypertens. 2020;22:135–41.

    Article  Google Scholar 

  15. Sola J, Vybornova A, Fallet S, Polychronopoulou E, Wurzner-Ghajarzadeh A, Wuerzner G. Validation of the optical Aktiia bracelet in different body positions for the persistent monitoring of blood pressure. Sci Rep. 2021;11:20644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a new ICT-based multisensor blood pressure monitoring system for use in hemodynamic biomarker-initiated anticipation medicine for cardiovascular disease: the National IMPACT Program Project. Prog Cardiovasc Dis. 2017;60:435–49.

    Article  PubMed  Google Scholar 

  17. Kokubo A, Kuwabara M, Nakajima H, Tomitani N, Yamashita S, Shiga T, et al. Automatic detection algorithm for establishing standard to identify “surge blood pressure”. Med Biol Eng Comput. 2020;58:1393–404.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tomitani N, Hoshide S, Kario K. Novel blood pressure monitoring methods: perspectives for achieving “perfect 24-hour blood pressure management”. Hypertens Res. 2023;46:2051–3.

  19. Tomitani N, Hoshide S, Kario K. Effective out-of-office BP monitoring to detect masked hypertension: perspectives for wearable BP monitoring. Hypertens Res. 2023;46:523–5.

    Article  PubMed  Google Scholar 

  20. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  21. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127–e248.

    Article  PubMed  Google Scholar 

  22. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  23. Nishizawa M, Hoshide S, Okawara Y, Matsuo T, Kario K. Strict blood pressure control achieved using an ICT-based home blood pressure monitoring system in a catastrophically damaged area after a disaster. J Clin Hypertens. 2017;19:26–9.

    Article  Google Scholar 

  24. Shibata S, Hoshide S. Current situation of telemedicine research for cardiovascular risk in Japan. Hypertens Res. 2023;46:1171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kario K, Harada N, Okura A. Digital therapeutics in hypertension: evidence and perspectives. Hypertension. 2022;79:2148–58.

    Article  CAS  PubMed  Google Scholar 

  26. Kario K, Nomura A, Harada N, Okura A, Nakagawa K, Tanigawa T, et al. Efficacy of a digital therapeutics system in the management of essential hypertension: the HERB-DH1 pivotal trial. Eur Heart J. 2021;42:4111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kario K, Tomitani N, Harada N, Okura A, Hisaki F, Tanigawa T, et al. Home blood pressure-lowering effect of digital therapeutics in hypertension: impact of body weight and salt intake. Hypertens Res. 2023;46:1181–7.

    Article  PubMed  Google Scholar 

  28. Waki T, Miura K, Tanaka-Mizuno S, Ohya Y, Node K, Itoh H, et al. Prevalence of hypertensive diseases and treated hypertensive patients in Japan: A nationwide administrative claims database study. Hypertens Res. 2022;45:1123–33.

    Article  PubMed  Google Scholar 

  29. Koshimizu H, Kojima R, Kario K, Okuno Y. Prediction of blood pressure variability using deep neural networks. Int J Med Inf. 2020;136:104067.

    Article  Google Scholar 

  30. Narita K, Hoshide S, Kario K. Short- to long-term blood pressure variability: current evidence and new evaluations. Hypertens Res. 2023;46:950–8.

    Article  PubMed  Google Scholar 

  31. Parati G, Bilo G, Kollias A, Pengo M, Ochoa JE, Castiglioni P, et al. Blood pressure variability: methodological aspects, clinical relevance and practical indications for management - a European Society of Hypertension position paper *. J Hypertens. 2023;41:527–44.

    Article  CAS  PubMed  Google Scholar 

  32. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11:1133–7.

    Article  CAS  PubMed  Google Scholar 

  33. Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8938 subjects from 11 populations. Hypertension. 2010;55:1049–57.

    Article  CAS  PubMed  Google Scholar 

  34. Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variability of home blood pressure and incident cardiovascular disease in clinical practice: the J-HOP study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84.

    Article  CAS  PubMed  Google Scholar 

  35. Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36:901–6.

    Article  CAS  PubMed  Google Scholar 

  36. Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49:1265–70.

    Article  CAS  PubMed  Google Scholar 

  37. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  38. Fujiwara T, Hoshide S, Kanegae H, Kario K. Clinical impact of the maximum mean value of home blood pressure on cardiovascular outcomes: a novel indicator of home blood pressure variability. Hypertension. 2021;78:840–50.

    Article  CAS  PubMed  Google Scholar 

  39. Hoshide S, Tomitani N, Kario K. Maximum ambulatory daytime blood pressure and risk of stroke in individuals with higher ambulatory arterial stiffness index: the JAMP study. Hypertens Res. 2023;46:84–90.

    Article  PubMed  Google Scholar 

  40. Lin CC, Li CI, Liu CS, Lin CH, Wang MC, Yang SY, et al. Effect of blood pressure trajectory and variability on new-onset chronic kidney disease in patients with type 2 diabetes. Hypertens Res. 2022;45:876–86.

    Article  PubMed  Google Scholar 

  41. Kinuta M, Hisamatsu T, Fukuda M, Taniguchi K, Komukai S, Nakahata N, et al. Associations of indoor and outdoor temperatures and their difference with home blood pressure: the Masuda study. Hypertens Res. 2023;46:200–7.

    Article  PubMed  Google Scholar 

  42. Ye XF, Huang QF, Li Y, Wang JG. Seasonal variation in the effect of antihypertensive treatment with the irbesartan/hydrochlorothiazide combination. Hypertens Res. 2023;46:507–15.

    Article  CAS  PubMed  Google Scholar 

  43. Narita K, Hoshide S, Kario K. Seasonal variation in blood pressure: current evidence and recommendations for hypertension management. Hypertens Res. 2021;44:1363–72.

    Article  PubMed  Google Scholar 

  44. Mancia G, Facchetti R, Vanoli J, Dolfini V, Grassi G. Reproducibility of blood pressure phenotypes identified by office and ambulatory blood pressure in treated hypertensive patients. Data from the PHYLLIS study. Hypertens Res. 2022;45:1599–608.

    Article  CAS  PubMed  Google Scholar 

  45. Imai Y, Satoh H, Nagai K, Sakuma M, Sakuma H, Minami N, et al. Characteristics of a community-based distribution of home blood pressure in Ohasama in northern Japan. J Hypertens. 1993;11:1441–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ohkubo T, Imai Y, Tsuji I, Nagai K, Kato J, Kikuchi N, et al. Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. J Hypertens. 1998;16:971–5.

    Article  CAS  PubMed  Google Scholar 

  47. Imai Y. A personal history of research on hypertension From an encounter with hypertension to the development of hypertension practice based on out-of-clinic blood pressure measurements. Hypertens Res. 2022;45:1726–42.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kario K, Tomitani N, Nishizawa M, Harada N, Kanegae H, Hoshide S. Concept, study design, and baseline blood pressure control status of the nationwide prospective HI-JAMP study using multisensor ABPM. Hypertens Res. 2023;46:357–67.

    Article  PubMed  Google Scholar 

  49. Yoon M, You SC, Oh J, Lee CJ, Lee SH, Kang SM, et al. Prevalence and prognosis of refractory hypertension diagnosed using ambulatory blood pressure measurements. Hypertens Res. 2022;45:1353–62.

    Article  CAS  PubMed  Google Scholar 

  50. Cuspidi C, Sala C, Tadic M, Grassi G. When office blood pressure is not enough: the case of masked hypertension. Am J Hypertens. 2019;32:225–33.

    Article  PubMed  Google Scholar 

  51. Franklin SS, O'Brien E, Thijs L, Asayama K, Staessen JA. Masked hypertension: a phenomenon of measurement. Hypertension. 2015;65:16–20.

    Article  CAS  PubMed  Google Scholar 

  52. Pickering TG, Eguchi K, Kario K. Masked hypertension: a review. Hypertens Res. 2007;30:479–88.

    Article  PubMed  Google Scholar 

  53. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36:2284–309.

    Article  CAS  PubMed  Google Scholar 

  54. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:2199–269.

    Article  PubMed  Google Scholar 

  55. Alves MAM, Feitosa ADM, Mota-Gomes MA, Paiva AMG, Barroso WS, Miranda RD, et al. Accuracy of screening strategies for masked hypertension: a large-scale nationwide study based on home blood pressure monitoring. Hypertens Res. 2023;46:742–50.

    Article  PubMed  Google Scholar 

  56. Xia JH, Zhang DY, Kang YY, Guo QH, Cheng YB, Huang JF, et al. The prevalence of masked hypertension and masked uncontrolled hypertension in relation to overweight and obesity in a nationwide registry in China. Hypertens Res. 2022;45:1690–700.

    Article  PubMed  Google Scholar 

  57. Strauss-Kruger M, Kruger R, Jansen Van Vuren E, Jacobs A, Louw R, Mels C. Identifying a metabolomics profile associated with masked hypertension in two independent cohorts: Data from the African-PREDICT and SABPA studies. Hypertens Res. 2022;45:1781–93.

    Article  CAS  PubMed  Google Scholar 

  58. Tomitani N, Hoshide S, Kario K, investigators H-Js. Diagnostic agreement of masked uncontrolled hypertension detected by ambulatory blood pressure and home blood pressure measured by an all-in-one BP monitoring device: The HI-JAMP study. Hypertens Res. 2023;46:157–64.

    Article  PubMed  Google Scholar 

  59. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  60. Bhatt DL, Vaduganathan M, Kandzari DE, Leon MB, Rocha-Singh K, Townsend RR, et al. Long-term outcomes after catheter-based renal artery denervation for resistant hypertension: final follow-up of the randomised SYMPLICITY HTN-3 Trial. Lancet. 2022;400:1405–16.

    Article  PubMed  Google Scholar 

  61. Mahfoud F, Kandzari DE, Kario K, Townsend RR, Weber MA, Schmieder RE, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet. 2022;399:1401–10.

    Article  CAS  PubMed  Google Scholar 

  62. Kario K, Mahfoud F, Kandzari DE, Townsend RR, Weber MA, Schmieder RE, et al. Long-term reduction in morning and nighttime blood pressure after renal denervation: 36-month results from SPYRAL HTN-ON MED trial. Hypertens Res. 2023;46:280–8.

    Article  CAS  PubMed  Google Scholar 

  63. Panchavinnin P, Wanthong S, Roubsanthisuk W, Tresukosol D, Buranakitjaroen P, Chotruangnapa C, et al. Long-term outcome of renal nerve denervation (RDN) for resistant hypertension. Hypertens Res. 2022;45:962–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kandzari DE, Townsend RR, Bakris G, Basile J, Bloch MJ, Cohen DL, et al. Renal denervation in hypertension patients: proceedings from an expert consensus roundtable cosponsored by SCAI and NKF. Catheter Cardiovasc Inter. 2021;98:416–26.

    Article  Google Scholar 

  65. Kario K, Kim BK, Aoki J, Wong AY, Lee YH, Wongpraparut N, et al. Renal Denervation in Asia: Consensus Statement of the Asia Renal Denervation Consortium. Hypertension 2020;75:590–602.

    Article  CAS  PubMed  Google Scholar 

  66. Schmieder RE, Mahfoud F, Mancia G, Azizi M, Bohm M, Dimitriadis K, et al. European Society of Hypertension position paper on renal denervation 2021. J Hypertens. 2021;39:1733–41.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Z, Zhang X, Ye R, Li X, Chen X. Patient preference for renal denervation therapy in hypertension: a cross-sectional survey in Chengdu, China. Hypertens Res. 2022;45:954–61.

    Article  PubMed  Google Scholar 

  68. Kario K, Kagitani H, Hayashi S, Hanamura S, Ozawa K, Kanegae H. A Japan nationwide web-based survey of patient preference for renal denervation for hypertension treatment. Hypertens Res. 2022;45:232–40.

    Article  PubMed  Google Scholar 

  69. Schmieder RE, Hogerl K, Jung S, Bramlage P, Veelken R, Ott C. Patient preference for therapies in hypertension: a cross-sectional survey of German patients. Clin Res Cardiol. 2019;108:1331–42.

    Article  PubMed  Google Scholar 

  70. Schmieder RE, Kandzari DE, Wang TD, Lee YH, Lazarus G, Pathak A. Differences in patient and physician perspectives on pharmaceutical therapy and renal denervation for the management of hypertension. J Hypertens. 2021;39:162–8.

    Article  CAS  PubMed  Google Scholar 

  71. Ogoyama Y, Kario K. Patient preference and Long-term outcome of renal denervation for resistant hypertension. Hypertens Res. 2022;45:1271–3.

    Article  PubMed  Google Scholar 

  72. Blood Pressure Lowering Treatment Trialists C. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet. 2021;397:1625–36.

    Article  Google Scholar 

  73. Kario K, Sakima A, Ohya Y. STEP to estimate cardiovascular events by home blood pressure in the era of digital hypertension. Hypertens Res. 2022;45:11–4.

    Article  PubMed  Google Scholar 

  74. Lai Y, Zhou H, Chen W, Liu H, Liu G, Xu Y, et al. The intrarenal blood pressure modulation system is differentially altered after renal denervation guided by different intensities of blood pressure responses. Hypertens Res. 2023;46:456–67.

    Article  CAS  PubMed  Google Scholar 

  75. Katsurada K, Nandi SS, Sharma NM, Patel KP. Enhanced expression and function of renal SGLT2 (Sodium-Glucose Cotransporter 2) in heart failure: role of renal nerves. Circ Heart Fail. 2021;14:e008365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Katsurada K, Nandi SS, Zheng H, Liu X, Sharma NM, Patel KP. GLP-1 mediated diuresis and natriuresis are blunted in heart failure and restored by selective afferent renal denervation. Cardiovasc Diabetol. 2020;19:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zheng H, Liu X, Katsurada K, Patel KP. Renal denervation improves sodium excretion in rats with chronic heart failure: effects on expression of renal ENaC and AQP2. Am J Physiol Heart Circ Physiol. 2019;317:H958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Matsumoto C, Shibata S, Kishi T, Morimoto S, Mogi M, Yamamoto K, et al. Long COVID and hypertension-related disorders: a report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertens Res. 2023;46:601–19.

    Article  PubMed  Google Scholar 

  79. Shibata S, Kobayashi K, Tanaka M, Asayama K, Yamamoto E, Nakagami H, et al. COVID-19 pandemic and hypertension: an updated report from the Japanese Society of Hypertension project team on COVID-19. Hypertens Res. 2023;46:589–600.

    Article  PubMed  Google Scholar 

  80. Matsuzawa Y, Kimura K, Ogawa H, Tamura K. Impact of renin-angiotensin-aldosterone system inhibitors on COVID-19. Hypertens Res. 2022;45:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McFarlane E, Linschoten M, Asselbergs FW, Lacy PS, Jedrzejewski D, Williams B, et al. The impact of pre-existing hypertension and its treatment on outcomes in patients admitted to hospital with COVID-19. Hypertens Res. 2022;45:834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jagannatha GNP, Yasmin A, Pradnyana I, Kamardi S, Pradnyaandara I, Pangkahila EE, et al. Therapeutic target and clinical impact of day-to-day blood pressure variability in hypertensive patients with covid-19. Hypertens Res. 2023;46:165–74.

    Article  CAS  PubMed  Google Scholar 

  83. Li FK, An DW, Guo QH, Zhang YQ, Qian JY, Hu WG. et al. Day-by-day blood pressure variability in hospitalized patients with COVID-19. J Clin Hypertens. 2021;23:1675–80.

    Article  CAS  Google Scholar 

  84. Nam JH, Park JI, Kim BJ, Kim HT, Lee JH, Lee CH, et al. Clinical impact of blood pressure variability in patients with COVID-19 and hypertension. Blood Press Monit. 2021;26:348–56.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Porzionato A, Emmi A, Barbon S, Boscolo-Berto R, Stecco C, Stocco E, et al. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J. 2020;287:3681–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Satoh M, Murakami T, Obara T, Metoki H. Time-series analysis of blood pressure changes after the guideline update in 2019 and the coronavirus disease pandemic in 2020 using Japanese longitudinal data. Hypertens Res. 2022;45:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Laffin LJ, Kaufman HW, Chen Z, Niles JK, Arellano AR, Bare LA, et al. Rise in blood pressure observed among US adults during the COVID-19 pandemic. Circulation. 2022;145:235–7.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang S, Zhong Y, Wang L, Yin X, Li Y, Liu Y, et al. Anxiety, home blood pressure monitoring, and cardiovascular events among older hypertension patients during the COVID-19 pandemic. Hypertens Res. 2022;45:856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Terentes-Printzios D, Gardikioti V, Solomou E, Emmanouil E, Gourgouli I, Xydis P, et al. The effect of an mRNA vaccine against COVID-19 on endothelial function and arterial stiffness. Hypertens Res. 2022;45:846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maruhashi T, Higashi Y. Cardiovascular risk in patients receiving antihypertensive drug treatment from the perspective of endothelial function. Hypertens Res. 2022;45:1322–33.

    Article  CAS  PubMed  Google Scholar 

  91. Kawabata T, Kubozono T, Ojima S, Kawasoe S, Akasaki Y, Salim AA, et al. Insufficient blood pressure control is independently associated with increased arterial stiffness. Hypertens Res. 2022;45:1861–8.

    Article  CAS  PubMed  Google Scholar 

  92. Han Y, Maruhashi T, Kajikawa M, Kishimoto S, Yamaji T, Harada T, et al. Isolated diastolic hypertension is not associated with endothelial dysfunction. Hypertens Res. 2022;45:698–707.

    Article  PubMed  Google Scholar 

  93. Pewowaruk RJ, Hein AJ, Carlsson CM, Korcarz CE, Gepner AD. Effects of nitroglycerin-induced vasodilation on elastic and muscular artery stiffness in older Veterans. Hypertens Res. 2022;45:1997–2007.

    Article  CAS  PubMed  Google Scholar 

  94. van Loo C, Giudici A, Spronck B. Potential adverse effects of vasodilatory antihypertensive medication on vascular stiffness in elderly individuals. Hypertens Res. 2022;45:2024–7.

    Article  PubMed  Google Scholar 

  95. Nechyporenko A, Tedla YG, Korcarz C, Tattersall MC, Greenland P, Gepner AD. Association of statin therapy with progression of carotid arterial stiffness: the Multi-Ethnic Study of Atherosclerosis (MESA). Hypertens Res. 2023;46:679–87.

    Article  CAS  PubMed  Google Scholar 

  96. Tajima T, Ikeda A, Steptoe A, Takahashi K, Maruyama K, Tomooka K, et al. The independent association between salivary alpha-amylase activity and arterial stiffness in Japanese men and women: the Toon Health Study. Hypertens Res. 2022;45:1249–62.

    Article  CAS  PubMed  Google Scholar 

  97. Strazzullo P, D'Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Blaustein MP, Leenen FH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, et al. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol. 2012;302:H1031–49.

    Article  CAS  PubMed  Google Scholar 

  99. Bolivar JJ. Essential hypertension: an approach to its etiology and neurogenic pathophysiology. Int J Hypertens. 2013;2013:547809.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jackson SL, Cogswell ME, Zhao L, Terry AL, Wang CY, Wright J, et al. Association between urinary sodium and potassium excretion and blood pressure among adults in the United States: National Health and Nutrition Examination Survey, 2014. Circulation. 2018;137:237–46.

    Article  CAS  PubMed  Google Scholar 

  101. Ma Y, He FJ, Sun Q, Yuan C, Kieneker LM, Curhan GC, et al. 24-hour urinary sodium and potassium excretion and cardiovascular risk. N Engl J Med. 2022;386:252–63.

    Article  CAS  PubMed  Google Scholar 

  102. Mente A, O'Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371:601–11.

    Article  PubMed  Google Scholar 

  103. Kogure M, Nakamura T, Tsuchiya N, Hirata T, Nochioka K, Narita A, et al. Consideration of the reference value and number of measurements of the urinary sodium-to-potassium ratio based on the prevalence of untreated home hypertension: TMM Cohort Study. Hypertens Res. 2022;45:866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Salman E, Kadota A, Okami Y, Kondo K, Yoshita K, Okuda N, et al. Investigation of the urinary sodium-to-potassium ratio target level based on the recommended dietary intake goals for the Japanese population: The INTERMAP Japan. Hypertens Res. 2022;45:1850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lai JS, Aung YN, Khalid Y, Cheah SC. Impact of different dietary sodium reduction strategies on blood pressure: a systematic review. Hypertens Res. 2022;45:1701–12.

    Article  CAS  PubMed  Google Scholar 

  106. Yamanaka N, Itabashi M, Fujiwara Y, Nofuji Y, Abe T, Kitamura A, et al. Relationship between the urinary Na/K ratio, diet and hypertension among community-dwelling older adults. Hypertens Res. 2023;46:556–64.

    Article  CAS  PubMed  Google Scholar 

  107. Sharifi F, Heydarzadeh R, Vafa RG, Rahmani M, Parizi MM, Ahmadi A, et al. The effect of calcium and vitamin D supplements on blood pressure in postmenopausal women: myth or reality? Hypertens Res. 2022;45:1203–9.

    Article  CAS  PubMed  Google Scholar 

  108. Wu L, Sun D. Effects of calcium plus vitamin D supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Hum Hypertens. 2017;31:547–54.

    Article  CAS  PubMed  Google Scholar 

  109. Wu Z, Wu Y, Rao J, Hu H, Wang C, Wu J, et al. Associations among vitamin D, tobacco smoke, and hypertension: A cross-sectional study of the NHANES 2001-2016. Hypertens Res. 2022;45:1986–96.

    Article  CAS  PubMed  Google Scholar 

  110. Bai L, Qu C, Feng Y, Liu G, Li X, Li W, et al. Evidence of a casual relationship between vitamin D deficiency and hypertension: a family-based study. Hypertens Res. 2022;45:1814–22.

    Article  CAS  PubMed  Google Scholar 

  111. National Institute for Health and Care Excellence. Hypertension in pregnancy: diagnosis and management (NG133). 2019. https://www.nice.org.uk/guidance/ng133/resources/hypertension-in-pregnancy-diagnosis-and-management-pdf-66141717671365.

  112. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018;72:24–43.

    Article  CAS  PubMed  Google Scholar 

  113. Magee LA, von Dadelszen P, Rey E, Ross S, Asztalos E, Murphy KE, et al. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med. 2015;372:407–17.

    Article  CAS  PubMed  Google Scholar 

  114. Takagi K, Nakamoto O, Watanabe K, Tanaka K, Matsubara K, Kawabata I, et al. A review of the best practice guide 2021 for the diagnosis and management of hypertensive disorders of pregnancy (HDP). Hypertens Res Pregnancy. 2022;10:57–73.

    Article  Google Scholar 

  115. Ueda A, Hasegawa M, Matsumura N, Sato H, Kosaka K, Abiko K, et al. Lower systolic blood pressure levels in early pregnancy are associated with a decreased risk of early-onset superimposed preeclampsia in women with chronic hypertension: a multicenter retrospective study. Hypertens Res. 2022;45:135–45.

    Article  PubMed  Google Scholar 

  116. Abe M, Arima H, Yoshida Y, Fukami A, Sakima A, Metoki H, et al. Optimal blood pressure target to prevent severe hypertension in pregnancy: A systematic review and meta-analysis. Hypertens Res. 2022;45:887–99.

    Article  PubMed  Google Scholar 

  117. Yamasaki M, Nakamoto O, Suzuki Y, Takagi K, Seki H, Eguchi K, et al. Validation of the gestational week division border for subclassification of pregnancy induced hypertension. Hypertens Res Pregnancy. 2013;1:23–30.

    Article  Google Scholar 

  118. Ohkuchi A, Suzuki H, Matsubara K, Watanabe K, Saitou T, Oda H, et al. Exponential increase of the gestational-age-specific incidence of preeclampsia onset (COPE study): a multicenter retrospective cohort study in women with maternal check-ups at <20 weeks of gestation in Japan. Hypertens Res. 2022;45:1679–89.

    Article  PubMed  Google Scholar 

  119. Suzuki Y, Matsubara K, Watanabe K, Tanaka K, Yamamoto T, Nohira T, et al. A multicenter prospective study of home blood pressure measurement (HBPM) during pregnancy in Japanese women. Hypertens Res. 2022;45:1563–74.

    Article  PubMed  Google Scholar 

  120. Minakami H, Hiramatsu Y, Koresawa M, Fujii T, Hamada H, Iitsuka Y, et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and Japan Association of Obstetricians and Gynecologists (JAOG) 2011 edition. J Obstet Gynaecol Res. 2011;37:1174-97.

  121. Minakami H, Maeda T, Fujii T, Hamada H, Iitsuka Y, Itakura A, et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and Japan Association of Obstetricians and Gynecologists (JAOG) 2014 edition. J Obstet Gynaecol Res. 2014;40:1469–99.

  122. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  123. Mulatero P, Stowasser M, Loh KC, Fardella CE, Gordon RD, Mosso L, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89:1045–50.

    Article  CAS  PubMed  Google Scholar 

  124. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–300.

    Article  CAS  PubMed  Google Scholar 

  125. Born-Frontsberg E, Reincke M, Rump LC, Hahner S, Diederich S, Lorenz R, et al. Cardiovascular and cerebrovascular comorbidities of hypokalemic and normokalemic primary aldosteronism: results of the German Conn’s Registry. J Clin Endocrinol Metab. 2009;94:1125–30.

    Article  CAS  PubMed  Google Scholar 

  126. Ohno Y, Sone M, Inagaki N, Yamasaki T, Ogawa O, Takeda Y, et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: a multicenter study in Japan. Hypertension. 2018;71:530–7.

    Article  CAS  PubMed  Google Scholar 

  127. Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022;43:474–84.

    Article  CAS  PubMed  Google Scholar 

  128. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383:2219–29.

    Article  CAS  PubMed  Google Scholar 

  129. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385:2252–63.

    Article  CAS  PubMed  Google Scholar 

  130. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6:51–9.

    Article  PubMed  Google Scholar 

  131. Yoshida Y, Fujiki R, Kinoshita M, Sada K, Miyamoto S, Ozeki Y, et al. Importance of dietary salt restriction for patients with primary aldosteronism during treatment with mineralocorticoid receptor antagonists: The potential importance of post-treatment plasma renin levels. Hypertens Res. 2023;46:100–7.

    Article  CAS  PubMed  Google Scholar 

  132. Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, Okuda Y, et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin J Am Soc Nephrol. 2020;15:1715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Okuda Y, Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, et al. The renoprotective effect of esaxerenone independent of blood pressure lowering: a post hoc mediation analysis of the ESAX-DN trial. Hypertens Res. 2023;46:437–44.

    Article  CAS  PubMed  Google Scholar 

  134. Freeman MW, Bond M, Murphy B, Hui J, Isaacsohn J. Results from a phase 1, randomized, double-blind, multiple ascending dose study characterizing the pharmacokinetics and demonstrating the safety and selectivity of the aldosterone synthase inhibitor baxdrostat in healthy volunteers. Hypertens Res. 2023;46:108–18.

    Article  CAS  PubMed  Google Scholar 

  135. Freeman MW, Halvorsen YD, Marshall W, Pater M, Isaacsohn J, Pearce C, et al. Phase 2 trial of baxdrostat for treatment-resistant hypertension. N Engl J Med. 2023;388:395–405.

    Article  CAS  PubMed  Google Scholar 

  136. Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a large, multicenter cohort study in Japan. Diabetes Care. 2019;42:938–45.

    Article  CAS  PubMed  Google Scholar 

  137. Nakajima Y, Yamada M, Taguchi R, Satoh T, Hashimoto K, Ozawa A, et al. Cardiovascular complications of patients with aldosteronism associated with autonomous cortisol secretion. J Clin Endocrinol Metab. 2011;96:2512–8.

    Article  CAS  PubMed  Google Scholar 

  138. Peng KY, Liao HW, Chan CK, Lin WC, Yang SY, Tsai YC, et al. Presence of subclinical hypercortisolism in clinical aldosterone-producing adenomas predicts lower clinical success. Hypertension. 2020;76:1537–44.

    Article  CAS  PubMed  Google Scholar 

  139. Spath M, Korovkin S, Antke C, Anlauf M, Willenberg HS. Aldosterone- and cortisol-co-secreting adrenal tumors: the lost subtype of primary aldosteronism. Eur J Endocrinol. 2011;164:447–55.

    Article  PubMed  Google Scholar 

  140. Wu VC, Chan CK, Wu WC, Peng KY, Chang YS, Yeh FY, et al. New-onset diabetes mellitus risk associated with concurrent autonomous cortisol secretion in patients with primary aldosteronism. Hypertens Res. 2023;46:445–55.

    Article  CAS  PubMed  Google Scholar 

  141. Jo R, Shibata H, Kurihara I, Yokota K, Kobayashi S, Murai-Takeda A, et al. Mechanisms of mineralocorticoid receptor-associated hypertension in diabetes mellitus: the role of O-GlcNAc modification. Hypertens Res. 2023;46:19–31.

    Article  CAS  PubMed  Google Scholar 

  142. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.

    Article  PubMed  Google Scholar 

  143. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815.

    Article  CAS  PubMed  Google Scholar 

  144. Mori S, Kosaki K, Matsui M, Takahashi K, Yoshioka M, Tarumi T, et al. Sedentary behavior is associated with reduced cardiovagal baroreflex sensitivity in healthy adults. Hypertens Res. 2022;45:1193–202.

    Article  PubMed  Google Scholar 

  145. Toba A, Ishikawa J, Suzuki A, Tamura Y, Araki A, Harada K. Orthostatic blood pressure rise is associated with frailty in older patients. Geriatr Gerontol Int. 2019;19:525–9.

    Article  PubMed  Google Scholar 

  146. Baycan OF, Celik FB, Guvenc TS, Atici A, Yilmaz Y, Konal O, et al. Coronary flow velocity reserve is reduced in patients with an exaggerated blood pressure response to exercise. Hypertens Res. 2022;45:1653–63.

    Article  PubMed  Google Scholar 

  147. Aker A, Saliba W, Hislop E, Zafrir B. Blood pressure measurements during treadmill exercise testing and the risk for the future development of atrial fibrillation. Hypertens Res. 2022;45:1496–504.

    Article  PubMed  Google Scholar 

  148. Tokushige A, Ohishi M. Pathophysiology of the exaggerated blood pressure response to exercise. Hypertens Res. 2022;45:2028–9.

    Article  PubMed  Google Scholar 

  149. Lopes S, Mesquita-Bastos J, Garcia C, Figueiredo D, Oliveira J, Guimaraes GV, et al. The blood pressure response to acute exercise predicts the ambulatory blood pressure response to exercise training in patients with resistant hypertension: results from the EnRicH trial. Hypertens Res. 2022;45:1392–7.

    Article  PubMed  Google Scholar 

  150. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511.

    Article  PubMed  Google Scholar 

  151. Srikanthan P, Horwich TB, Tseng CH. Relation of muscle mass and fat mass to cardiovascular disease mortality. Am J Cardiol. 2016;117:1355–60.

    Article  PubMed  Google Scholar 

  152. Bai T, Fang F, Li F, Ren Y, Hu J, Cao J. Sarcopenia is associated with hypertension in older adults: a systematic review and meta-analysis. BMC Geriatr. 2020;20:279.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bao W, Sun Y, Zhang T, Zou L, Wu X, Wang D, et al. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia: a systematic review and meta-analysis. Aging Dis. 2020;11:863–73.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Huang CY, Mayer PK, Wu MY, Liu DH, Wu PC, Yen HR. The effect of Tai Chi in elderly individuals with sarcopenia and frailty: a systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev. 2022;82:101747.

    Article  PubMed  Google Scholar 

  155. Lu L, Mao L, Feng Y, Ainsworth BE, Liu Y, Chen N. Effects of different exercise training modes on muscle strength and physical performance in older people with sarcopenia: a systematic review and meta-analysis. BMC Geriatr. 2021;21:708.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vallon V. Renoprotective effects of SGLT2 Inhibitors. Heart Fail Clin. 2022;18:539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Tsai YC, Tsai JC, Chen SC, Chiu YW, Hwang SJ, Hung CC, et al. Association of fluid overload with kidney disease progression in advanced CKD: a prospective cohort study. Am J Kidney Dis. 2014;63:68–75.

    Article  PubMed  Google Scholar 

  158. O'Donnell MP, Kasiske BL, Keane WF. Glomerular hemodynamic and structural alterations in experimental diabetes mellitus. FASEB J. 1988;2:2339–47.

    Article  CAS  PubMed  Google Scholar 

  159. Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med. 2007;357:797–805.

    Article  CAS  PubMed  Google Scholar 

  160. Nakayama T, Morimoto K, Uchiyama K, Kusahana E, Washida N, Azegami T, et al. Effects of renin-angiotensin system inhibitors on the incidence of unplanned dialysis. Hypertens Res. 2022;45:1018–27.

    Article  CAS  PubMed  Google Scholar 

  161. Bhandari S, Mehta S, Khwaja A, Cleland JGF, Ives N, Brettell E, et al. Renin-angiotensin system inhibition in advanced chronic kidney disease. N Engl J Med. 2022;387:2021–32.

    Article  CAS  PubMed  Google Scholar 

  162. Fu EL, Evans M, Clase CM, Tomlinson LA, van Diepen M, Dekker FW, et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J Am Soc Nephrol. 2021;32:424–35.

    Article  CAS  PubMed  Google Scholar 

  163. Yoo TH, Hong SJ, Kim S, Shin S, Kim DK, Lee JP, et al. The FimAsartaN proTeinuriA SusTaIned reduCtion in comparison with losartan in diabetic chronic kidney disease (FANTASTIC) trial. Hypertens Res. 2022;45:2008–17.

    Article  CAS  PubMed  Google Scholar 

  164. Haruhara K, Kanzaki G, Tsuboi N. Nephrons, podocytes and chronic kidney disease: strategic antihypertensive therapy for renoprotection. Hypertens Res. 2023;46:299–310.

    Article  PubMed  Google Scholar 

  165. Haruhara K, Kanzaki G, Sasaki T, Hatanaka S, Okabayashi Y, Puelles VG, et al. Associations between nephron number and podometrics in human kidneys. Kidney Int. 2022;102:1127–35.

    Article  CAS  PubMed  Google Scholar 

  166. Toyoda K, Ninomiya T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol. 2014;13:823–33.

    Article  PubMed  Google Scholar 

  167. Hung SC, Lai YS, Kuo KL, Tarng DC. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. J Am Heart Assoc. 2015;4:e001918.

  168. Huang QF, Cheng YB, Guo QH, Liu CY, Kang YY, Sheng CS, et al. Clinic and ambulatory blood pressure in relation to the interaction between plasma advanced glycation end products and sodium dietary intake and renal handling. Hypertens Res. 2022;45:665–74.

    Article  CAS  PubMed  Google Scholar 

  169. Masuda T, Nagata D. Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease. Hypertens Res. 2023;46:1195–201.

    Article  CAS  PubMed  Google Scholar 

  170. Thomson SC, Vallon V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am J Physiol Ren Physiol. 2021;320:F761–F71.

    Article  CAS  Google Scholar 

  171. Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8:e14360.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Masuda T, Ohara K, Vallon V, Nagata D. SGLT2 inhibitor and loop diuretic induce different vasopressin and fluid homeostatic responses in nondiabetic rats. Am J Physiol Ren Physiol. 2022;323:F361–F9.

    Article  CAS  Google Scholar 

  173. Diamond JA, Phillips RA. Hypertensive heart disease. Hypertens Res. 2005;28:191–202.

    Article  CAS  PubMed  Google Scholar 

  174. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  175. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  176. Bombelli M, Vanoli J, Facchetti R, Maloberti A, Cuspidi C, Grassi G, et al. Impact of the increase in left ventricular mass on the risk of long-term cardiovascular mortality: a prospective cohort study. Hypertension. 2023;80:1321–30.

    Article  CAS  PubMed  Google Scholar 

  177. Zhou D, Huang Y, Cai A, Yan M, Cheng Q, Feng X, et al. Longitudinal study of left ventricular mass index trajectories and risk of mortality in hypertension: a cohort study. J Am Heart Assoc. 2023;12:e028568.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Waki H, Hoshide S, Kario K. Left ventricular mass as a predictor of cardiovascular events in the era of hypertension management using home blood pressure measurement: the J-HOP study. Hypertens Res. 2022;45:1240–8.

    Article  CAS  PubMed  Google Scholar 

  179. Kiuchi MG, Carnagarin R, Matthews VB, Schlaich MP. Multi-organ denervation: a novel approach to combat cardiometabolic disease. Hypertens Res. 2023, https://doi.org/10.1038/s41440-023-01287-x.

  180. Park Y, Kim NH, Kwon TY, Kim SG. A novel adiposity index as an integrated predictor of cardiometabolic disease morbidity and mortality. Sci Rep. 2018;8:16753.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cai S, Zhu T, Ding Y, Cheng B, Zhang A, Bao Q, et al. The relationship between the weight-adjusted-waist index and left ventricular hypertrophy in Chinese hypertension adults. Hypertens Res. 2023;46:253–60.

    Article  PubMed  Google Scholar 

  182. Shigematsu Y, Norimatsu S, Ohtsuka T, Okayama H, Higaki J. Sex-related differences in the relations of insulin resistance and obesity to left ventricular hypertrophy in Japanese hypertensive patients. Hypertens Res. 2006;29:499–504.

    Article  CAS  PubMed  Google Scholar 

  183. Takami T, Hoshide S, Kario K. Differential impact of antihypertensive drugs on cardiovascular remodeling: a review of findings and perspectives for HFpEF prevention. Hypertens Res. 2022;45:53–60.

    Article  PubMed  Google Scholar 

  184. Wei FF, Zhou Y, Wu Y, Chen X, He J, Dong Y, et al. Clinical information from repeated blood pressure measurements in the management of heart failure with preserved ejection fraction. Hypertens Res. 2023;46:475–84.

    Article  CAS  PubMed  Google Scholar 

  185. Nagai M, Dote K, Forster CY. Denervation or stimulation? Role of sympatho-vagal imbalance in HFpEF with hypertension. Hypertens Res. 2023, https://doi.org/10.1038/s41440-023-01272-4.

  186. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35:2224–31b.

    Article  PubMed  Google Scholar 

  187. Kresoja KP, Rommel KP, Fengler K, von Roeder M, Besler C, Lucke C, et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14:e007421.

    Article  CAS  PubMed  Google Scholar 

  188. Malbert CH, Picq C, Divoux JL, Henry C, Horowitz M. Obesity-associated alterations in glucose metabolism are reversed by chronic bilateral stimulation of the abdominal vagus nerve. Diabetes. 2017;66:848–57.

    Article  CAS  PubMed  Google Scholar 

  189. Dai F, Yin J, Chen JDZ. Effects and mechanisms of vagal nerve stimulation on body weight in diet-induced obese rats. Obes Surg. 2020;30:948–56.

    Article  PubMed  Google Scholar 

  190. Annoni EM, Van Helden D, Guo Y, Levac B, Libbus I, KenKnight BH, et al. Chronic low-level vagus nerve stimulation improves long-term survival in salt-sensitive hypertensive rats. Front Physiol. 2019;10:25.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zhou L, Filiberti A, Humphrey MB, Fleming CD, Scherlag BJ, Po SS, et al. Low-level transcutaneous vagus nerve stimulation attenuates cardiac remodelling in a rat model of heart failure with preserved ejection fraction. Exp Physiol. 2019;104:28–38.

    Article  CAS  PubMed  Google Scholar 

  192. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7:871–7.

    Article  PubMed  Google Scholar 

  193. Stavrakis S, Elkholey K, Morris L, Niewiadomska M, Asad ZUA, Humphrey MB. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: a pilot randomized clinical trial. J Am Heart Assoc. 2022;11:e023582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tran N, Asad Z, Elkholey K, Scherlag BJ, Po SS, Stavrakis S. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J Cardiovasc Transl Res. 2019;12:221–30.

    Article  PubMed  Google Scholar 

  195. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Forster CY. Case report: SGLT2i, transcutaneous vagus nerve stimulation, and their effects on intrarenal venous flow pattern in HFpEF. Front Neurosci. 2022;16:999831.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Forster CY. Afterload reduction after non-invasive vagus nerve stimulation in acute heart failure. Front Hum Neurosci. 2023;17:1149449.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Ikeda S, Shinohara K, Kashihara S, Matsumoto S, Yoshida D, Nakashima R, et al. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2023;46:268–79.

    Article  CAS  PubMed  Google Scholar 

  198. Kishi T, Hirooka Y, Katsuki M, Ogawa K, Shinohara K, Isegawa K, et al. Exercise training causes sympathoinhibition through antioxidant effect in the rostral ventrolateral medulla of hypertensive rats. Clin Exp Hypertens. 2012;34:278–83.

    Article  PubMed  Google Scholar 

  199. Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, et al. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat Biomed Eng. 2023, https://doi.org/10.1038/s41551-023-01061-x.

  200. Chen CW, Kuo TBJ, Hsu PC, Li JY, Kuo KL, Yang CCH. Roles of sleep-related cardiovascular autonomic functions in voluntary-exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Hypertens Res. 2022;45:1154–67.

    Article  PubMed  Google Scholar 

  201. Sakakibara F, Ueda S, Uchida K, Kinjo N, Arai H, Nezu M, et al. Association between dihydropyridine calcium channel blockers and ischemic strokes in patients with nonvalvular atrial fibrillation. Hypertens Res. 2022;45:1028–36.

    Article  CAS  PubMed  Google Scholar 

  202. Benbir G, Uluduz D, Ince B, Bozluolcay M. Atherothrombotic ischemic stroke in patients with atrial fibrillation. Clin Neurol Neurosurg. 2007;109:485–90.

    Article  PubMed  Google Scholar 

  203. Yamamoto K, Akasaka H, Yasunobe Y, Shimizu A, Nomoto K, Nagai K, et al. Clinical characteristics of older adults with hypertension and unrecognized cognitive impairment. Hypertens Res. 2022;45:612–9.

    Article  PubMed  Google Scholar 

  204. Moll AC, Woodard JL. Hypertension and cognition are minimally associated in late life. Hypertens Res. 2022;45:1622–31.

    Article  PubMed  Google Scholar 

  205. Kohata N, Kurihara I, Yokota K, Kobayashi S, Murai-Takeda A, Mitsuishi Y, et al. Lysine-specific demethylase 1 as a corepressor of mineralocorticoid receptor. Hypertens Res. 2022;45:641–9.

    Article  CAS  PubMed  Google Scholar 

  206. Ogura T, Kitada K, Morisawa N, Fujisawa Y, Kidoguchi S, Nakano D, et al. Contributions of renal water loss and skin water conservation to blood pressure elevation in spontaneously hypertensive rats. Hypertens Res. 2023;46:32–9.

    Article  CAS  PubMed  Google Scholar 

  207. Anderson JL, Knowlton KU. Cardiovascular events and gout flares. JAMA 2022;328:425–6.

    Article  PubMed  Google Scholar 

  208. Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Association between gout flare and subsequent cardiovascular events among patients with gout. JAMA 2022;328:440–50.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Mackenzie IS, Hawkey CJ, Ford I, Greenlaw N, Pigazzani F, Rogers A, et al. Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial. Lancet. 2022;400:1195–205.

    Article  CAS  PubMed  Google Scholar 

  210. Dong J, Hu LK, Lu YK, Liu YH, Chu X, Yan YX. Association of serum uric acid with the risk of developing hypertension: a prospective cohort study with mediation analysis. Hypertens Res. 2023;46:345–56.

    Article  CAS  PubMed  Google Scholar 

  211. Sakuma M, Toyoda S, Arikawa T, Koyabu Y, Kato T, Adachi T, et al. Topiroxostat versus allopurinol in patients with chronic heart failure complicated by hyperuricemia: a prospective, randomized, open-label, blinded-end-point clinical trial. PLoS One. 2022;17:e0261445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Naganuma J, Sakuma M, Kitahara K, Kato T, Yokomachi J, Yamauchi F, et al. Optimal uric acid reduction to improve vascular endothelial function in patients with chronic heart failure complicated by hyperuricemia. Hypertens Res. 2023;46:688–96.

    Article  CAS  PubMed  Google Scholar 

  213. Tanaka A, Taguchi I, Teragawa H, Ishizaka N, Kanzaki Y, Tomiyama H, et al. Febuxostat does not delay progression of carotid atherosclerosis in patients with asymptomatic hyperuricemia: a randomized, controlled trial. PLoS Med. 2020;17:e1003095.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Shiina K, Tomiyama H, Tanaka A, Yoshida H, Eguchi K, Kario K, et al. Differential effect of a xanthine oxidase inhibitor on arterial stiffness and carotid atherosclerosis: a subanalysis of the PRIZE study. Hypertens Res. 2022;45:602–11.

    Article  CAS  PubMed  Google Scholar 

  215. Yue C, Ying C, Li X. Association of first trimester serum uric acid with preeclampsia: an observational cohort study with propensity score matching. Hypertens Res. 2023;46:377–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mogi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogi, M., Tanaka, A., Node, K. et al. 2023 update and perspectives. Hypertens Res 47, 6–32 (2024). https://doi.org/10.1038/s41440-023-01398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01398-5

Keywords

This article is cited by

Search

Quick links