Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Aldosteronism is associated with more severe cerebral small vessel disease in hypertensive intracerebral hemorrhage

A Comment to this article was published on 22 November 2023

Abstract

Primary aldosteronism is associated with various types of cardiovascular and cerebrovascular damage independently of hypertension. Although chronic hypertension and related cerebral arteriosclerosis are the main risk factors for intracerebral hemorrhage, the effects of aldosteronism remain poorly understood. We enrolled 90 survivors of hypertensive intracerebral hemorrhage, 21 of them with aldosteronism and 69 with essential hypertension as controls in this study. Clinical parameters and neuroimaging markers of cerebral small vessel disease were recorded, and its correlations with aldosteronism were investigated. Our results showed that the aldosteronism group (55.2 ± 9.7 years, male 47.6%) had similar hypertension severity but exhibited a higher cerebral microbleed count (interquartile range) (8.5 [2.0‒25.8] vs 3 [1.0‒6.0], P = 0.005) and higher severity of dilated perivascular space in the basal ganglia (severe perivascular space [number >20], 52.4% vs. 24.6%, P = 0.029; large perivascular space [>3 mm], 52.4% vs. 20.3%, P = 0.010), compared to those with essential hypertension (53.8 ± 11.7 years, male 73.9%). In multivariate models, aldosteronism remained an independent predictor of a higher (>10) microbleed count (odds ratio = 8.60, P = 0.004), severe perivascular space (odds ratio = 4.00, P = 0.038); the aldosterone-to-renin ratio was associated with dilated perivascular space (P = 0.043) and large perivascular space (P = 0.008). In conclusions, survivors of intracerebral hemorrhage with aldosteronism showed a tendency towards more severe hypertensive arteriopathy than the essential hypertension counterparts independently of blood pressure; aldosteronism may contribute to dilated perivascular space around the deep perforating arteries.

Aldosteronism is associated with more severe cerebral small vessel disease in hypertensive intracerebral hemorrhage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–2300.

    Article  CAS  PubMed  Google Scholar 

  2. Douma S, Petidis K, Doumas M, Papaefthimiou P, Triantafyllou A, Kartali N, et al. Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet. 2008;371:1921–6.

    Article  CAS  PubMed  Google Scholar 

  3. Strauch B, Petrak O, Zelinka T, Wichterle D, Holaj R, Kasalicky M, et al. Adrenalectomy improves arterial stiffness in primary aldosteronism. Am J hypertens. 2008;21:1086–92.

    Article  PubMed  Google Scholar 

  4. Lin YH, Lin LY, Chen A, Wu XM, Lee JK, Su TC, et al. Adrenalectomy improves increased carotid intima-media thickness and arterial stiffness in patients with aldosterone producing adenoma. Atherosclerosis. 2012;221:154–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lin YH, Huang KH, Lee JK, Wang SM, Yen RF, Wu VC, et al. Factors influencing left ventricular mass regression in patients with primary aldosteronism post adrenalectomy. J Renin Angiotensin Aldosterone Syst. 2011;12:48–53.

    Article  PubMed  Google Scholar 

  6. Weber KT, Brilla CG, Janicki JS, Reddy HK, Campbell SE. Myocardial fibrosis: role of ventricular systolic pressure, arterial hypertension, and circulating hormones. Basic Res Cardiol. 1991;86:25–31.

    PubMed  Google Scholar 

  7. Rossi GP, Di Bello V, Ganzaroli C, Sacchetto A, Cesari M, Bertini A, et al. Excess aldosterone is associated with alterations of myocardial texture in primary aldosteronism. Hypertension. 2002;40:23–27.

    Article  CAS  PubMed  Google Scholar 

  8. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8.

    Article  CAS  PubMed  Google Scholar 

  9. Holaj R, Zelinka T, Wichterle D, Petrak O, Strauch B, Widimsky J Jr. Increased intima-media thickness of the common carotid artery in primary aldosteronism in comparison with essential hypertension. J hypertens. 2007;25:1451–7.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan Y, Li N, Liu Y, Wang M, Heizhati M, Zhu Q, et al. Plasma aldosterone concentration is associated with white matter lesions in patients with primary aldosteronism. Endocrine.2022;75:889–98.

    Article  CAS  PubMed  Google Scholar 

  11. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6:51–59.

    Article  PubMed  Google Scholar 

  12. Ohno Y, Sone M, Inagaki N, Yamasaki T, Ogawa O, Takeda Y, et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: a multicenter study in Japan. Hypertension. 2018;71:530–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chang YH, Chung SD, Wu CH, Chueh JS, Chen L, Lin PC, et al. Surgery decreases the long-term incident stroke risk in patients with primary aldosteronism. Surgery. 2020;167:367–77.

    Article  PubMed  Google Scholar 

  14. Mulatero P, Monticone S, Bertello C, Viola A, Tizzani D, Iannaccone A, et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J Clin Endocrinol Metab. 2013;98:4826–33.

    Article  CAS  PubMed  Google Scholar 

  15. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N. Engl J Med. 2001;344:1450–60.

    Article  CAS  PubMed  Google Scholar 

  16. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–96.

    Article  PubMed  Google Scholar 

  17. McCarthy J, Yang J, Clissold B, Young MJ, Fuller PJ, Phan T. Hypertension management in stroke prevention: time to consider primary aldosteronism. Stroke. 2021;52:e626–34.

    Article  PubMed  Google Scholar 

  18. Tsai HH, Chen SJ, Tsai LK, Pasi M, Lo YL, Chen YF, et al. Long-Term vascular outcomes in patients with mixed location intracerebral hemorrhage and microbleeds. Neurology. 2021;96:e995–1004.

    Article  CAS  PubMed  Google Scholar 

  19. Yeh SJ, Tang SC, Tsai LK, Jeng JS. Pathogenetical subtypes of recurrent intracerebral hemorrhage: designations by SMASH-U classification system. Stroke. 2014;45:2636–42.

    Article  PubMed  Google Scholar 

  20. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J. 1949;37:161–86.

    Article  CAS  PubMed  Google Scholar 

  21. Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings. Circulation. 1987;75:565–72.

    Article  CAS  PubMed  Google Scholar 

  22. Wu VC, Hu YH, Er LK, Yen RF, Chang CH, Chang YL, et al. Case detection and diagnosis of primary aldosteronism - The consensus of Taiwan Society of Aldosteronism. J Formos Med Assoc. 2017;116:993–1005.

    Article  PubMed  Google Scholar 

  23. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jager HR, et al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology. 2009;73:1759–66.

    Article  CAS  PubMed  Google Scholar 

  25. Pasi M, Boulouis G, Fotiadis P, Auriel E, Charidimou A, Haley K, et al. Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology. 2017;88:2162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsai HH, Pasi M, Tsai LK, Chen YF, Chen YW, Tang SC, et al. Superficial cerebellar microbleeds and cerebral amyloid angiopathy: a magnetic resonance imaging/positron emission tomography study. Stroke. 2020;51:202–8.

  27. Tsai HH, Pasi M, Tsai LK, Chen YF, Lee BC, Tang SC, et al. Microangiopathy underlying mixed-location intracerebral hemorrhages/microbleeds: a PiB-PET study. Neurology. 2019;92:e774–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017;88:1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke. 2010;41:450–4.

    Article  PubMed  Google Scholar 

  30. Ding J, Sigurethsson S, Jonsson PV, Eiriksdottir G, Charidimou A, Lopez OL, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the age, gene/environment susceptibility-reykjavik study. JAMA Neurol. 2017;74:1105–12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, et al. Endothelial dysfunction in primary aldosteronism. Int J Mol Sci. 2019;20:5214.

  32. Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res. 2016;1637:146–53.

    Article  CAS  PubMed  Google Scholar 

  33. Linn J, Halpin A, Demaerel P, Ruhland J, Giese AD, Dichgans M, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology. 2010;74:1346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsai HH, Kim JS, Jouvent E, Gurol ME. Updates on prevention of hemorrhagic and lacunar strokes. J Stroke. 2018;20:167–79.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cuadrado-Godia E, Dwivedi P, Sharma S, Ois Santiago A, Roquer Gonzalez J, Balcells M, et al. Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies. J Stroke. 2018;20:302–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pasi M, Charidimou A, Boulouis G, Auriel E, Ayres A, Schwab KM, et al. Mixed-location cerebral hemorrhage/microbleeds: underlying microangiopathy and recurrence risk. Neurology. 2018;90:e119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Blanc C, Viguier A, Calviere L, Planton M, Albucher JF, Rousseau V, et al. Underlying small vessel disease associated with mixed cerebral microbleeds. Front Neurol. 2019;10:1126.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020;16:137–53.

    Article  PubMed  Google Scholar 

  39. Zhu YC, Tzourio C, Soumare A, Mazoyer B, Dufouil C, Chabriat H. Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke. 2010;41:2483–90.

    Article  PubMed  Google Scholar 

  40. Weber KT. Aldosteronism revisited: perspectives on less well-recognized actions of aldosterone. J Lab Clin Med. 2003;142:71–82.

    Article  CAS  PubMed  Google Scholar 

  41. Weber KT, Singh KD, Hey JC. Idiopathic intracranial hypertension with primary aldosteronism: report of 2 cases. Am J Med Sci. 2002;324:45–50.

    Article  PubMed  Google Scholar 

  42. Riba-Llena I, Jimenez-Balado J, Castane X, Girona A, Lopez-Rueda A, Mundet X, et al. Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke. 2018;49:1279–81.

    Article  PubMed  Google Scholar 

  43. Kim BJ, Kim JS. Ischemic stroke subtype classification: an asian viewpoint. J Stroke. 2014;16:8–17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

TAIPAI study group

Vin-Cent Wu12, Tai-Shuan Lai12, Shih-Chieh Jeff Chueh12, Shao-Yu Yang12, Kao-Lang Liu12, Chin-Chen Chang12, Bo-Ching Lee12, Shuo-Meng Wang12, Kuo-How Huang12, Po-Chih Lin12, Yen-Hung Lin12, Chi-Sheng Hung12, Lian-Yu Lin12, Shih-Cheng Liao12, Ching-Chu Lu12, Chieh-Kai Chan12, Leay-Kiaw Er13, Ya-Hui Hu13, Che-Hsiung Wu13, Yao-Chou Tsai13, Zheng-Wei Chen14, Chien-Ting Pan14, Che-Wei Liao10, Cheng-Hsuan Tsai15, Yi-Yao Chang16, Chen-Hsun Ho17, Wei-Chieh Huang18, Ying-Ying Chen19

Funding

Funding

This work was supported by grants from the National Taiwan University Hospital (Lee BC, 109–004687) and Ministry of Science and Technology of Taiwan (111–2314-B-002–250-MY2).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

B-CL project concept and design, data collection, imaging analysis, data analysis, write up. H-HT project concept and design, imaging analysis. Z-WC project concept and design, critical revisions. C-CC project concept and design. L-KT project concept and design. J-ZH data collection, imaging analysis. Y-YC project concept and design. C-HT project concept and design. C-HC critical revisions. C-WL critical revisions. C-TP critical revisions. C-SH critical revisiśons. V-CW project concept and design, data collection, critical revisions. Y-HL project concept and design, data collection, imaging analysis, critical revisions.

Corresponding authors

Correspondence to Li-Kai Tsai or Yen-Hung Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BC., Tsai, HH., Chen, ZW. et al. Aldosteronism is associated with more severe cerebral small vessel disease in hypertensive intracerebral hemorrhage. Hypertens Res 47, 608–617 (2024). https://doi.org/10.1038/s41440-023-01458-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01458-w

Keywords

This article is cited by

Search

Quick links