Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2023 OSAKA
  • Published:

Roles of the mechanosensitive ion channel Piezo1 in the renal podocyte injury of experimental hypertensive nephropathy

A Comment to this article was published on 09 February 2024

Abstract

Glomerular podocyte injury plays an essential role in proteinuria pathogenesis, a hallmark of chronic kidney disease, including hypertensive nephropathy. Although podocytes are susceptible to mechanical stimuli, their mechanotransduction pathways remain elusive. Piezo proteins, including Piezo1 and 2, are mechanosensing ion channels that mediate various biological phenomena. Although renal Piezo2 expression and its alteration in rodent dehydration and hypertension models have been reported, the role of Piezo1 in hypertensive nephropathy and podocyte injury is unclear. In this study, we examined Piezo1 expression and localization in the kidneys of control mice and in those of mice with hypertensive nephrosclerosis. Uninephrectomized, aldosterone-infused, salt-loaded mice developed hypertension, albuminuria, podocyte injury, and glomerulosclerosis. RNAscope in situ hybridization revealed that Piezo1 expression was enhanced in the podocytes, mesangial cells, and distal tubular cells of these mice compared to those of the uninephrectomized, vehicle-infused control group. Piezo1 upregulation in the glomeruli was accompanied by the induction of podocyte injury-related markers, plasminogen activator inhibitor-1 and serum/glucocorticoid regulated kinase 1. These changes were reversed by antihypertensive drug. Exposure of Piezo1-expressing cultured podocytes to mechanical stretch activated Rac1 and upregulated the above-mentioned markers, which was antagonized by the Piezo1 blocker grammostola mechanotoxin #4 (GsMTx4). Administration of Piezo1-specific agonist Yoda1 mimicked the effects of mechanical stretch, which was minimized by the Yoda1-specific inhibitor Dooku1 and Rac inhibitor. Rac1 was also activated in the above-mentioned hypertensive mice, and Rac inhibitor downregulated gene expression of podocyte injury-related markers in vivo. Our results suggest that Piezo1 plays a role in mechanical stress-induced podocyte injury.

The roles of mechanosensitive ion channel Piezo1 are unknown in hypertensive nephropathy and podocyte injury. We showed Piezo1 upregulation in podocytes together with their injury in hypertensive nephropathy mouse model. Mechanical stretch or Yoda1 administration in the cultured podocytes upregulated podocyte injury-related markers, further suggesting Piezo1 involvement in podocyte injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagase M, Fujita T. Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol. 2013;9:86–98.

    Article  CAS  PubMed  Google Scholar 

  2. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006;47:1084–93.

    Article  CAS  PubMed  Google Scholar 

  3. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension. 2007;49:355–64.

    Article  CAS  PubMed  Google Scholar 

  4. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol. 2015;26:258–69.

    Article  PubMed  Google Scholar 

  5. Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflug Arch. 2017;469:937–49.

    Article  CAS  Google Scholar 

  6. Dworkin LD, Hostetter TH, Rennke HG, Brenner BM. Hemodynamic basis for glomerular injury in rats with desoxycorticosterone-salt hypertension. J Clin Invest. 1984;73:1448–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanzaki G, Puelles VG, Cullen-McEwen LA, Hoy WE, Okabayashi Y, Tsuboi N, et al. New insights on glomerular hyperfiltration: a Japanese autopsy study. JCI Insight. 2017;2:e94334. https://doi.org/10.1172/jci.insight.94334.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huber TB, Schermer B, Müller RU, Höhne M, Bartram M, Calixto A, et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA. 2006;103:17079–86.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forst AL, Olteanu VS, Mollet G, Wlodkowski T, Schaefer F, Dietrich A, et al. Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J Am Soc Nephrol. 2016;27:848–62.

    Article  CAS  PubMed  Google Scholar 

  10. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 2017;18:771–83.

    Article  CAS  PubMed  Google Scholar 

  12. Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci USA. 2014;111:10347–52.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep. 2015;13:1161–71.

    Article  CAS  PubMed  Google Scholar 

  15. Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science. 2018;362:464–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mochida Y, Ochiai K, Nagase T, Nonomura K, Akimoto Y, Fukuhara H, et al. Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells. Sci Rep. 2022;12:4197. https://doi.org/10.1038/s41598-022-07987-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ochiai K, Mochida Y, Nagase T, Fukuhara H, Yamaguchi Y, Nagase M. Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone. Hypertens Res. 2023;46:1234–46.

    Article  CAS  PubMed  Google Scholar 

  18. Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C, Picard N, et al. Piezo1-dependent regulation of urinary osmolarity. Pflug Arch. 2016;468:1197–206.

    Article  CAS  Google Scholar 

  19. Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM, Kleyman TR, et al. Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Ren Physiol. 2019;317:F303–F321.

    Article  CAS  Google Scholar 

  20. Fei L, Xu M, Wang H, Zhong C, Jiang S, Lichtenberger FB, et al. Piezo1 mediates vasodilation induced by acute hyperglycemia in mouse renal arteries and microvessels. Hypertension. 2023;80:1598–610.

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Zeng H, Wang L, Luo S, Zhou Y. Activation of Piezo1 downregulates renin in juxtaglomerular cells and contributes to blood pressure homeostasis. Cell Biosci. 2022;12:197. https://doi.org/10.1186/s13578-022-00931-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu Y, Wan P, Zhang J, Li X, Xing J, Zou Y, et al. Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway. Front Cell Dev Biol. 2021;9:741060. https://doi.org/10.3389/fcell.2021.741060.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Zhao X, Kong Y, Liang B, Xu J, Lin Y, Zhou N, et al. Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight. 2022;7:e152330. https://doi.org/10.1172/jci.insight.152330.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He Y, Deng B, Liu S, Luo S, Ning Y, Pan X, et al. Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation. Hypertension. 2022;79:918–31.

    Article  CAS  PubMed  Google Scholar 

  25. Ma J, Weisberg A, Griffin JP, Vaughan DE, Fogo AB, Brown NJ. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 2006;69:1064–72.

    Article  CAS  PubMed  Google Scholar 

  26. Sawada H, Naito Y, Oboshi M, Iwasaku T, Okuhara Y, Morisawa D, et al. Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice. Hypertens Res. 2015;38:317–22.

    Article  CAS  PubMed  Google Scholar 

  27. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14:22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, Saito Y, et al. A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol. 2002;161:799–805.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Saito K, Shiino T, Kurihara H, Harita Y, Hattori S, Ohta Y. Afadin regulates RhoA/Rho-associated protein kinase signaling to control formation of actin stress fibers in kidney podocytes. Cytoskeleton. 2015;72:146–56.

    Article  CAS  PubMed  Google Scholar 

  31. Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, et al. Chemical activation of the mechanotransduction channel Piezo1. Elife. 2015;4:e07369. https://doi.org/10.7554/eLife.07369.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Evans EL, Cuthbertson K, Endesh N, Rode B, Blythe NM, Hyman AJ, et al. Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation. Br J Pharm. 2018;175:1744–59.

    Article  CAS  Google Scholar 

  33. Désiré L, Bourdin J, Loiseau N, Peillon H, Picard V, De Oliveira C, et al. RAC1 inhibition targets amyloid precursor protein processing by γ-secretase and decreases Aβ production in vitro and in vivo. J Biol Chem. 2005;280:37516–25.

    Article  PubMed  Google Scholar 

  34. Nagase M, Kurihara H, Aiba A, Young MJ, Sakai T. Deletion of Rac1GTPase in the myeloid lineage protects against inflammation-mediated kidney injury in mice. PLoS ONE. 2016;11:e0150886. https://doi.org/10.1371/journal.pone.0150886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naruse K, Yamada T, Sai XR, Hamaguchi M, Sokabe M. Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene. 1998;17:455–63.

    Article  CAS  PubMed  Google Scholar 

  36. Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 2011;50:6295–300.

    Article  CAS  PubMed  Google Scholar 

  37. Alpers CE, Seifert RA, Hudkins KL, Johnson RJ, Bowen-Pope DF. PDGF-receptor localizes to mesangial, parietal epithelial, and interstitial cells in human and primate kidneys. Kidney Int. 1993;43:286–94.

    Article  CAS  PubMed  Google Scholar 

  38. Kawamura S, Miyamoto S, Brown JH. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem. 2003;278:31111–7.

    Article  CAS  PubMed  Google Scholar 

  39. Suchyna TM. Piezo channels and GsMTx4: two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog Biophys Mol Biol. 2017;130:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma LJ, Fogo AB. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 2003;64:350–5.

  41. Hartner A, Cordasic N, Klanke B, Veelken R, Hilgers KF. Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant. 2003;18:1999–2004.

  42. Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 2013;14:1143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, et al. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol. 2001;12:413–22.

    Article  PubMed  Google Scholar 

  44. Endlich N, Endlich K. The challenge and response of podocytes to glomerular hypertension. Semin Nephrol. 2012;32:327–41.

    Article  CAS  PubMed  Google Scholar 

  45. Sasaki F, Hayashi M, Mouri Y, Nakamura S, Adachi T, Nakashima T. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochem Biophys Res Commun. 2020;521:806–13.

    Article  CAS  PubMed  Google Scholar 

  46. Ma S, Dubin AE, Zhang Y, Mousavi SAR, Wang Y, Coombs AM, et al. A role of PIEZO1 in iron metabolism in mice and humans. Cell. 2021;184:969–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mundel P, Reiser J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 2010;77:571–80.

    Article  CAS  PubMed  Google Scholar 

  48. Selye H, Hall CE, Rowley EM. Malignant hypertension produced by treatment with desoxycorticosterone acetate and sodium chloride. Can Med Assoc J. 1943;49:88–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.

    Article  CAS  PubMed  Google Scholar 

  50. Nagase M, Fujita T. Mineralocorticoid receptor activation in obesity hypertension. Hypertens Res. 2009;32:649–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Yuki Mochida and Dr. Koji Ochiai for their help with data analyses, to Prof. Hidetake Kurihra for providing the rat podocyte cell lines, to Prof. Yoshihiro Akimoto for his help with electron microscopy, and to Dr. Keiko Nonomura, Prof. Yoshihiro Yamaguchi, Prof. Hiroshi Fukuhara, and Prof. George Matsumura for their helpful discussion in this research.

Funding

This study was supported in part by JSPS KAKENHI Grant numbers JP17K09736, JP20K08616, JP23K07704, and by Japan Agency for Medical Research and Development (18gm5810019h9903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Nagase.

Ethics declarations

Conflict of interest

Esaxerenone was provided by Daiichi Sankyo Co., LTD., Tokyo, Japan.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogino, S., Yoshikawa, K., Nagase, T. et al. Roles of the mechanosensitive ion channel Piezo1 in the renal podocyte injury of experimental hypertensive nephropathy. Hypertens Res 47, 747–759 (2024). https://doi.org/10.1038/s41440-023-01536-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01536-z

Keywords

This article is cited by

Search

Quick links